This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2006 Singapore Junior Math Olympiad, 1

Find all integers $x,y$ that satisfy the equation $x+y=x^2-xy+y^2$

2013 European Mathematical Cup, 2

Palindrome is a sequence of digits which doesn't change if we reverse the order of its digits. Prove that a sequence $(x_n)^{\infty}_{n=0}$ defined as $x_n=2013+317n$ contains infinitely many numbers with their decimal expansions being palindromes.

2022 Princeton University Math Competition, 8

Ryan Alweiss storms into the Fine Hall common room with a gigantic eraser and erases all integers $n$ in the interval $[2, 728]$ such that $3^t$ doesn’t divide $n!$, where $t = \left\lceil \frac{n-3}{2} \right\rceil$. Find the sum of the leftover integers in that interval modulo $1000$.

2013 All-Russian Olympiad, 3

Find all positive integers $k$ such that for the first $k$ prime numbers $2, 3, \ldots, p_k$ there exist positive integers $a$ and $n>1$, such that $2\cdot 3\cdot\ldots\cdot p_k - 1=a^n$. [i]V. Senderov[/i]

2011 Korea - Final Round, 1

Prove that there is no positive integers $x,y,z$ satisfying \[ x^2 y^4 - x^4 y^2 + 4x^2 y^2 z^2 +x^2 z^4 -y^2 z^4 =0 \]

2017 Danube Mathematical Olympiad, 4

Determine all triples of positive integers $(x,y,z)$ such that $x^4+y^4 =2z^2$ and $x$ and $y$ are relatively prime.

2016 IMO, 3

Let $P=A_1A_2\cdots A_k$ be a convex polygon in the plane. The vertices $A_1, A_2, \ldots, A_k$ have integral coordinates and lie on a circle. Let $S$ be the area of $P$. An odd positive integer $n$ is given such that the squares of the side lengths of $P$ are integers divisible by $n$. Prove that $2S$ is an integer divisible by $n$.

2013 China Team Selection Test, 1

Let $n\ge 2$ be an integer. $a_1,a_2,\dotsc,a_n$ are arbitrarily chosen positive integers with $(a_1,a_2,\dotsc,a_n)=1$. Let $A=a_1+a_2+\dotsb+a_n$ and $(A,a_i)=d_i$. Let $(a_2,a_3,\dotsc,a_n)=D_1, (a_1,a_3,\dotsc,a_n)=D_2,\dotsc, (a_1,a_2,\dotsc,a_{n-1})=D_n$. Find the minimum of $\prod\limits_{i=1}^n\dfrac{A-a_i}{d_iD_i}$

2011 Indonesia TST, 4

Given an arbitrary prime $p>2011$. Prove that there exist positive integers $a, b, c$ not all divisible by $p$ such that for all positive integers $n$ that $p\mid n^4- 2n^2+ 9$, we have $p\mid 24an^2 + 5bn + 2011c$.

1965 Polish MO Finals, 2

Prove that if the numbers $ x_1 $ and $ x_2 $ are roots of the equation $ x^2 + px - 1 = 0 $, where $ p $ is an odd number, then for every natural $n$number $ x_1^n + x_2^n $ and $ x_1^{n+1} + x_2^{n+1} $ are integer and coprime.

2003 Federal Competition For Advanced Students, Part 1, 1

Find all triples of prime numbers $(p, q, r)$ such that $p^q + p^r$ is a perfect square.

2009 China Second Round Olympiad, 3

Let $k,l$ be two given integers. Prove that there exist infinite many integers $m\ge k$ such that $\gcd\left(\binom{m}{k},l\right)=1$.

1998 Croatia National Olympiad, Problem 2

Let $a$ and $m$ be positive integers and $p$ be an odd prime number such that $p^m\mid a-1$ and $p^{m+1}\nmid a-1$. Prove that (a) $p^{m+n}\mid a^{p^n}-1$ for all $n\in\mathbb N$, and (a) $p^{m+n+1}\nmid a^{p^n}-1$ for all $n\in\mathbb N$.

1959 Putnam, B6

Let $\alpha$ and $\beta$ be irrational numbers with the property that $$\frac{1}{\alpha} +\frac{1}{\beta}=1$$ Let$\{a_n\}$ and $\{b_n\}$ be the sequences given by $a_n= \lfloor n\alpha \rfloor$ and $b_n= \lfloor n\beta \rfloor$ respectively. Prove that the sequences $\{ a_n\}$ and $\{ b_n \} $ has no term in common and cover all the natural numbers. I know this theorem from long ago, but forgot the proof of it. Can anybody help me with this?

2017 Mid-Michigan MO, 10-12

[b]p1.[/b] In the group of five people any subgroup of three persons contains at least two friends. Is it possible to divide these five people into two subgroups such that all members of any subgroup are friends? [b]p2.[/b] Coefficients $a,b,c$ in expression $ax^2+bx+c$ are such that $b-c>a$ and $a \ne 0$. Is it true that equation $ax^2+bx+c=0$ always has two distinct real roots? [b]p3.[/b] Point $D$ is a midpoint of the median $AF$ of triangle $ABC$. Line $CD$ intersects $AB$ at point $E$. Distances $|BD|=|BF|$. Show that $|AE|=|DE|$. [b]p4.[/b] Real numbers $a,b$ satisfy inequality $a+b^5>ab^5+1$. Show that $a+b^7>ba^7+1$. [b]p5.[/b] A positive number was rounded up to the integer and got the number that is bigger than the original one by $28\%$. Find the original number (find all solutions). [b]p6.[/b] Divide a $5\times 5$ square along the sides of the cells into $8$ parts in such a way that all parts are different. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 District Olympiad, 2

Find the pairs of integers $(a, b)$ such that $a^2 + 2b^2 + 2a +1$ is a divisor of $2ab$.

2021 Iran MO (2nd Round), 2

Call a positive integer $n$ "Fantastic" if none of its digits are zero and it is possible to remove one of its digits and reach to an integer which is a divisor of $n$ . ( for example , 25 is fantastic , as if we remove digit 2 , resulting number would be 5 which is divisor of 25 ) Prove that the number of Fantastic numbers is finite.

1992 Balkan MO, 1

For all positive integers $m,n$ define $f(m,n) = m^{3^{4n}+6} - m^{3^{4n}+4} - m^5 + m^3$. Find all numbers $n$ with the property that $f(m, n)$ is divisible by 1992 for every $m$. [i]Bulgaria[/i]

2021 Thailand TSTST, 2

Find all positive integers $n$ such that $2021^n$ can be expressed in the form $x^4-4y^4$ for some integers $x,y$.

2008 Korean National Olympiad, 4

We define $A, B, C$ as a [i]partition[/i] of $\mathbb{N}$ if $A,B,C$ satisfies the following. (i) $A, B, C \not= \phi$ (ii) $A \cap B = B \cap C = C \cap A = \phi$ (iii) $A \cup B \cup C = \mathbb{N}$. Prove that the partition of $\mathbb{N}$ satisfying the following does not exist. (i) $\forall$ $a \in A, b \in B$, we have $a+b+2008 \in C$ (ii) $\forall$ $b \in B, c \in C$, we have $b+c+2008 \in A$ (iii) $\forall$ $c \in C, a \in A$, we have $c+a+2008 \in B$

1990 IMO Shortlist, 26

Let $ p(x)$ be a cubic polynomial with rational coefficients. $ q_1$, $ q_2$, $ q_3$, ... is a sequence of rationals such that $ q_n \equal{} p(q_{n \plus{} 1})$ for all positive $ n$. Show that for some $ k$, we have $ q_{n \plus{} k} \equal{} q_n$ for all positive $ n$.

2011 Belarus Team Selection Test, 1

Let $g(n)$ be the number of all $n$-digit natural numbers each consisting only of digits $0,1,2,3$ (but not nessesarily all of them) such that the sum of no two neighbouring digits equals $2$. Determine whether $g(2010)$ and $g(2011)$ are divisible by $11$. I.Kozlov

2015 Postal Coaching, Problem 1

Let $n \in \mathbb{N}$ be such that $gcd(n, 6) = 1$. Let $a_1 < a_2 < \cdots < a_n$ and $b_1 < b_2 < \cdots < b_n$ be two collection of positive integers such that $a_j + a_k + a_l = b_j + b_k + b_l$ for all integers $1 \le j < k < l \le n$. Prove that $a_j = b_j$ for all $1 \le j \le n$.

1995 IberoAmerican, 1

Find all the possible values of the sum of the digits of all the perfect squares. [Commented by djimenez] [b]Comment: [/b]I would rewrite it as follows: Let $f: \mathbb{N}\rightarrow \mathbb{N}$ such that $f(n)$ is the sum of all the digits of the number $n^2$. Find the image of $f$ (where, by image it is understood the set of all $x$ such that exists an $n$ with $f(n)=x$).

2003 Singapore Team Selection Test, 1

Let $A = \{3 + 10k, 6 + 26k, 5 + 29k, k = 1, 2, 3, 4, ...\}$. Determine the smallest positive integer $r$ such that there exists an integer $b$ with the property that the set $B = \{b + rk, k = 1, 2, 3, 4, ...\}$ is disjoint from $A$.