This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2017 Princeton University Math Competition, A7

Compute the number of ordered pairs of integers $(a, b)$, where $0 \le a < 17$ and $0 \le b < 17$, such that $y^2 \equiv x^3 +ax +b \pmod{17}$ has an even number of solutions $(x, y)$, where $0 \le x < 17$ and $0 \le y < 17$ are integers.

Kvant 2020, M2592

Let $P(x)$ be a polynomial taking integer values at integer inputs. Are there infinitely many natural numbers that are not representable in the form $P(k)-2^n$ where $n{}$ and $k{}$ are non-negative integers? [i]Proposed by F. Petrov[/i]

2011 Princeton University Math Competition, A7

Let $\{g_i\}_{i=0}^{\infty}$ be a sequence of positive integers such that $g_0=g_1=1$ and the following recursions hold for every positive integer $n$: \begin{align*} g_{2n+1} &= g_{2n-1}^2+g_{2n-2}^2 \\ g_{2n} &= 2g_{2n-1}g_{2n-2}-g_{2n-2}^2 \end{align*} Compute the remainder when $g_{2011}$ is divided by $216$.

2014 Brazil Team Selection Test, 1

Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that \[ m^2 + f(n) \mid mf(m) +n \] for all positive integers $m$ and $n$.

2018 Bulgaria National Olympiad, 5.

Given a polynomial $P(x)=a_{d}x^{d}+ \ldots +a_{2}x^{2}+a_{0}$ with positive integers for coefficients and degree $d\geq 2$. Consider the sequence defined by $$b_{1}=a_{0} ,b_{n+1}=P(b_{n}) $$ for $n \geq 1$ . Prove that for all $n \geq 2$ there exists a prime $p$ such that $p$ divides $b_{n}$ but does not divide $b_{1}b_{2} \ldots b_{n-1}$.

1966 Poland - Second Round, 4

Prove that if the natural numbers $ a $ and $ b $ satisfy the equation $ a^2+a = 3b^2 $, then the number $ a+1 $ is the square of an integer.

1979 IMO Shortlist, 7

If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.

1983 IMO Shortlist, 22

Let $n$ be a positive integer having at least two different prime factors. Show that there exists a permutation $a_1, a_2, \dots , a_n$ of the integers $1, 2, \dots , n$ such that \[\sum_{k=1}^{n} k \cdot \cos \frac{2 \pi a_k}{n}=0.\]

2023 Ukraine National Mathematical Olympiad, 11.7

For a positive integer $n$ consider all its divisors $1 = d_1 < d_2 < \ldots < d_k = n$. For $2 \le i \le k-1$, let's call divisor $d_i$ good, if $d_{i-1}d_{i+1}$ isn't divisible by $d_i$. Find all $n$, such that the number of their good divisors is smaller than the number of their prime distinct divisors. [i]Proposed by Mykhailo Shtandenko[/i]

1967 Swedish Mathematical Competition, 3

Show that there are only finitely many triples $(a, b, c)$ of positive integers such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{1000}$.

2015 Balkan MO Shortlist, N5

For a positive integer $s$, denote with $v_2(s)$ the maximum power of $2$ that divides $s$. Prove that for any positive integer $m$ that: $$v_2\left(\prod_{n=1}^{2^m}\binom{2n}{n}\right)=m2^{m-1}+1.$$ (FYROM)

2020 Princeton University Math Competition, A7

Let $\phi (x, u)$ be the smallest positive integer $n$ so that $2^u$ divides $x^n + 95$ if it exists, or $0$ if no such positive integer exists. Determine$ \sum_{i=0}^{255} \phi(i, 8)$.

2005 India National Olympiad, 4

All possible $6$-digit numbers, in each of which the digits occur in nonincreasing order (from left to right, e.g. $877550$) are written as a sequence in increasing order. Find the $2005$-th number in this sequence.

2023 Stanford Mathematics Tournament, R5

[b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $1$. Let the unit circles centered at $A$, $B$, and $C$ be $\Omega_A$, $\Omega_B$, and $\Omega_C$, respectively. Then, let $\Omega_A$ and $\Omega_C$ intersect again at point $D$, and $\Omega_B$ and $\Omega_C$ intersect again at point $E$. Line $BD$ intersects $\Omega_B$ at point $F$ where $F$ lies between $B$ and $D$, and line $AE$ intersects $\Omega_A$ at $G$ where $G$ lies between $A$ and $E$. $BD$ and $AE$ intersect at $H$. Finally, let $CH$ and $FG$ intersect at $I$. Compute $IH$. [b]p14.[/b] Suppose Bob randomly fills in a $45 \times 45$ grid with the numbers from $1$ to $2025$, using each number exactly once. For each of the $45$ rows, he writes down the largest number in the row. Of these $45$ numbers, he writes down the second largest number. The probability that this final number is equal to $2023$ can be expressed as $\frac{p}{q}$ where $p$ and $q$ are relatively prime positive integers. Compute the value of $p$. [b]p15.[/b] $f$ is a bijective function from the set $\{0, 1, 2, ..., 11\}$ to $\{0, 1, 2, ... , 11\}$, with the property that whenever $a$ divides $b$, $f(a)$ divides $f(b)$. How many such $f$ are there? [i]A bijective function maps each element in its domain to a distinct element in its range. [/i] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

DMM Team Rounds, 2019

[b]p1.[/b] Zion, RJ, Cam, and Tre decide to start learning languages. The four most popular languages that Duke offers are Spanish, French, Latin, and Korean. If each friend wants to learn exactly three of these four languages, how many ways can they pick courses such that they all attend at least one course together? [b]p2. [/b] Suppose we wrote the integers between $0001$ and $2019$ on a blackboard as such: $$000100020003 · · · 20182019.$$ How many $0$’s did we write? [b]p3.[/b] Duke’s basketball team has made $x$ three-pointers, $y$ two-pointers, and $z$ one-point free throws, where $x, y, z$ are whole numbers. Given that $3|x$, $5|y$, and $7|z$, find the greatest number of points that Duke’s basketball team could not have scored. [b]p4.[/b] Find the minimum value of $x^2 + 2xy + 3y^2 + 4x + 8y + 12$, given that $x$ and $y$ are real numbers. Note: calculus is not required to solve this problem. [b]p5.[/b] Circles $C_1, C_2$ have radii $1, 2$ and are centered at $O_1, O_2$, respectively. They intersect at points $ A$ and $ B$, and convex quadrilateral $O_1AO_2B$ is cyclic. Find the length of $AB$. Express your answer as $x/\sqrt{y}$ , where $x, y$ are integers and $y$ is square-free. [b]p6.[/b] An infinite geometric sequence $\{a_n\}$ has sum $\sum_{n=0}^{\infty} a_n = 3$. Compute the maximum possible value of the sum $\sum_{n=0}^{\infty} a_{3n} $. [b]p7.[/b] Let there be a sequence of numbers $x_1, x_2, x_3,...$ such that for all $i$, $$x_i = \frac{49}{7^{\frac{i}{1010}} + 49}.$$ Find the largest value of $n$ such that $$\left\lfloor \sum_{i=1}{n} x_i \right\rfloor \le 2019.$$ [b]p8.[/b] Let $X$ be a $9$-digit integer that includes all the digits $1$ through $9$ exactly once, such that any $2$-digit number formed from adjacent digits of $X$ is divisible by $7$ or $13$. Find all possible values of $X$. [b]p9.[/b] Two $2025$-digit numbers, $428\underbrace{\hbox{99... 99}}_{\hbox{2019 \,\, 9's}}571$ and $571\underbrace{\hbox{99... 99}}_{\hbox{2019 \,\, 9's}}428$ , form the legs of a right triangle. Find the sum of the digits in the hypotenuse. [b]p10.[/b] Suppose that the side lengths of $\vartriangle ABC$ are positive integers and the perimeter of the triangle is $35$. Let $G$ the centroid and $I$ be the incenter of the triangle. Given that $\angle GIC = 90^o$ , what is the length of $AB$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Belarusian National Olympiad, 9.1

Prove that the set of all divisors of a positive integer which is not a perfect square can be divided into pairs so that in each pair one number is divisible by another.

2000 Estonia National Olympiad, 2

In a three-digit positive integer $M$, the number of hundreds is less than the number of tenths and the number of tenths is less than the number of ones. The arithmetic mean of the integer three-digit numbers obtained by arranging the number $M$ and its numbers ends with the number $5$. Find all such three-digit numbers $M$.

1990 Rioplatense Mathematical Olympiad, Level 3, 2

Some of the people attending a meeting greet each other. Let $n$ be the number of people who greet an odd number of people. Prove that $n$ is even.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.5

Prove that for any natural $n>1$ there are infinitely many natural numbers $m$ such that for any nonnegative integers $k_1$,$k_2$, $...$,$k_m$, $$m \ne k_1^n+ k_2^n+... k_n^n,$$

1982 All Soviet Union Mathematical Olympiad, 342

What minimal number of numbers from the set $\{1,2,...,1982\}$ should be deleted to provide the property: [i]none of the remained numbers equals to the product of two other remained numbers[/i]?

2018 LMT Spring, Individual

[b]p1.[/b] Evaluate $6^4 +5^4 +3^4 +2^4$. [b]p2.[/b] What digit is most frequent between $1$ and $1000$ inclusive? [b]p3.[/b] Let $n = gcd \, (2^2 \cdot 3^3 \cdot 4^4,2^4 \cdot 3^3 \cdot 4^2)$. Find the number of positive integer factors of $n$. [b]p4.[/b] Suppose $p$ and $q$ are prime numbers such that $13p +5q = 91$. Find $p +q$. [b]p5.[/b] Let $x = (5^3 -5)(4^3 -4)(3^3 -3)(2^3 -2)(1^3 -1)$. Evaluate $2018^x$ . [b]p6.[/b] Liszt the lister lists all $24$ four-digit integers that contain each of the digits $1,2,3,4$ exactly once in increasing order. What is the sum of the $20$th and $18$th numbers on Liszt’s list? [b]p7.[/b] Square $ABCD$ has center $O$. Suppose $M$ is the midpoint of $AB$ and $OM +1 =OA$. Find the area of square $ABCD$. [b]p8.[/b] How many positive $4$-digit integers have at most $3$ distinct digits? [b]p9.[/b] Find the sumof all distinct integers obtained by placing $+$ and $-$ signs in the following spaces $$2\_3\_4\_5$$ [b]p10.[/b] In triangle $ABC$, $\angle A = 2\angle B$. Let $I$ be the intersection of the angle bisectors of $B$ and $C$. Given that $AB = 12$, $BC = 14$,and $C A = 9$, find $AI$ . [b]p11.[/b] You have a $3\times 3\times 3$ cube in front of you. You are given a knife to cut the cube and you are allowed to move the pieces after each cut before cutting it again. What is the minimumnumber of cuts you need tomake in order to cut the cube into $27$ $1\times 1\times 1$ cubes? p12. How many ways can you choose $3$ distinct numbers fromthe set $\{1,2,3,...,20\}$ to create a geometric sequence? [b]p13.[/b] Find the sum of all multiples of $12$ that are less than $10^4$ and contain only $0$ and $4$ as digits. [b]p14.[/b] What is the smallest positive integer that has a different number of digits in each base from $2$ to $5$? [b]p15.[/b] Given $3$ real numbers $(a,b,c)$ such that $$\frac{a}{b +c}=\frac{b}{3a+3c}=\frac{c}{a+3b},$$ find all possible values of $\frac{a +b}{c}$. [b]p16.[/b] Let S be the set of lattice points $(x, y, z)$ in $R^3$ satisfying $0 \le x, y, z \le 2$. How many distinct triangles exist with all three vertices in $S$? [b]p17.[/b] Let $\oplus$ be an operator such that for any $2$ real numbers $a$ and $b$, $a \oplus b = 20ab -4a -4b +1$. Evaluate $$\frac{1}{10} \oplus \frac19 \oplus \frac18 \oplus \frac17 \oplus \frac16 \oplus \frac15 \oplus \frac14 \oplus \frac13 \oplus \frac12 \oplus 1.$$ [b]p18.[/b] A function $f :N \to N$ satisfies $f ( f (x)) = x$ and $f (2f (2x +16)) = f \left(\frac{1}{x+8} \right)$ for all positive integers $x$. Find $f (2018)$. [b]p19.[/b] There exists an integer divisor $d$ of $240100490001$ such that $490000 < d < 491000$. Find $d$. [b]p20.[/b] Let $a$ and $b$ be not necessarily distinct positive integers chosen independently and uniformly at random from the set $\{1,2, 3, ... ,511,512\}$. Let $x = \frac{a}{b}$ . Find the probability that $(-1)^x$ is a real number. [b]p21[/b]. In $\vartriangle ABC$ we have $AB = 4$, $BC = 6$, and $\angle ABC = 135^o$. $\angle ABC$ is trisected by rays $B_1$ and $B_2$. Ray $B_1$ intersects side $C A$ at point $F$, and ray $B_2$ intersects side $C A$ at point $G$. What is the area of $\vartriangle BFG$? [b]p22.[/b] A level number is a number which can be expressed as $x \cdot \lfloor x \rfloor \cdot \lceil x \rceil$ where $x$ is a real number. Find the number of positive integers less than or equal to $1000$ which are also level numbers. [b]p23.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, $C A = 15$ and circumcenter $O$. Let $D$ be the intersection of $AO$ and $BC$. Compute $BD/DC$. [b]p24.[/b] Let $f (x) = x^4 -3x^3 +2x^2 +5x -4$ be a quartic polynomial with roots $a,b,c,d$. Compute $$\left(a+1 +\frac{1}{a} \right)\left(b+1 +\frac{1}{b} \right)\left(c+1 +\frac{1}{c} \right)\left(d+1 +\frac{1}{d} \right).$$ [b]p25.[/b] Triangle $\vartriangle ABC$ has centroid $G$ and circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$. If $AD = 2018$, $BD =20$, and $CD = 18$, find the area of triangle $\vartriangle DOG$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Thailand TST, 5

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

2022 BMT, 5

Compute the last digit of $(5^{20}+2)^3.$

1983 All Soviet Union Mathematical Olympiad, 356

The sequences $a_n$ and $b_n$ members are the last digits of $[\sqrt{10}^n]$ and $[\sqrt{2}^n]$ respectively (here $[ ...]$ denotes the whole part of a number). Are those sequences periodical?

2017 China Team Selection Test, 6

For a given positive integer $n$ and prime number $p$, find the minimum value of positive integer $m$ that satisfies the following property: for any polynomial $$f(x)=(x+a_1)(x+a_2)\ldots(x+a_n)$$ ($a_1,a_2,\ldots,a_n$ are positive integers), and for any non-negative integer $k$, there exists a non-negative integer $k'$ such that $$v_p(f(k))<v_p(f(k'))\leq v_p(f(k))+m.$$ Note: for non-zero integer $N$,$v_p(N)$ is the largest non-zero integer $t$ that satisfies $p^t\mid N$.