Found problems: 15460
2008 Hanoi Open Mathematics Competitions, 1
How many integers are there in $(b,2008b]$, where $b$ ($b > 0$) is given.
1993 Austrian-Polish Competition, 1
Solve in positive integers $x,y$ the equation $2^x - 3^y = 7$.
2018 Taiwan TST Round 3, 1
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]
2011 China Team Selection Test, 3
For any positive integer $d$, prove there are infinitely many positive integers $n$ such that $d(n!)-1$ is a composite number.
2023 Bangladesh Mathematical Olympiad, P1
Find all possible non-negative integer solution ($x,$ $y$) of the following equation-
$$x!+2^y=z!$$
Note: $x!=x\cdot(x-1)!$ and $0!=1$. For example, $5!=5\times4\times3\times2\times1=120$.
2000 Turkey MO (2nd round), 1
Let $p$ be a prime number. $T(x)$ is a polynomial with integer coefficients and degree from the set $\{0,1,...,p-1\}$ and such that $T(n) \equiv T(m) (mod p)$ for some integers m and n implies that $ m \equiv n (mod p)$. Determine the maximum possible value of degree of $T(x)$
2017 Iran MO (3rd round), 3
Let $k$ be a positive integer. Find all functions $f:\mathbb{N}\to \mathbb{N}$ satisfying the following two conditions:\\
• For infinitely many prime numbers $p$ there exists a positve integer $c$ such that $f(c)=p^k$.\\
• For all positive integers $m$ and $n$, $f(m)+f(n)$ divides $f(m+n)$.
2006 Peru MO (ONEM), 3
A pair $(m, n)$ of positive integers is called “[i]linked[/i]” if $m$ divides $3n + 1$ and $n$ divides $3m + 1$. If $a, b, c$ are distinct positive integers such that $(a, b)$ and $( b, c)$ are linked pairs, prove that the number $1$ belongs to the set $\{a, b, c\}$
2007 Ukraine Team Selection Test, 6
Find all primes $ p$ for that there is an integer $ n$ such that there are no integers $ x,y$ with $ x^3 \plus{} y^3 \equiv n \mod p$ (so not all residues are the sum of two cubes).
E.g. for $ p \equal{} 7$, one could set $ n \equal{} \pm 3$ since $ x^3,y^3 \equiv 0 , \pm 1 \mod 7$, thus $ x^3 \plus{} y^3 \equiv 0 , \pm 1 , \pm 2 \mod 7$ only.
1998 Irish Math Olympiad, 1
Find all positive integers $ n$ having exactly $ 16$ divisors $ 1\equal{}d_1<d_2<...<d_{16}\equal{}n$ such that $ d_6\equal{}18$ and $ d_9\minus{}d_8\equal{}17.$
PEN A Problems, 110
For each positive integer $n$, write the sum $\sum_{m=1}^n 1/m$ in the form $p_n/q_n$, where $p_n$ and $q_n$ are relatively prime positive integers. Determine all $n$ such that 5 does not divide $q_n$.
1991 Federal Competition For Advanced Students, P2, 6
Find the number of ten-digit natural numbers (which do not start with zero) containing no block $ 1991$.
2017 Polish Junior Math Olympiad Second Round, 3.
Let $a$, $b$, and $d$ be positive integers. It is known that $a+b$ is divisible by $d$ and $a\cdot b$ is divisible by $d^2$. Prove that both $a$ and $b$ are divisible by $d$.
2007 Postal Coaching, 6
Define the [i]distance [/i] between two $5$-digit numbers $\overline{a_1a_2a_3a_4a_5}$ and $\overline{b_1b_2b_3b_4b_5}$ to be the largest integer $j$ such that $a_j \ne b_j$ . (Example: the distance between $16523$ and $16452$ is $5$.) Suppose all $5$-digit numbers are written in a line in some order. What is the minimal possible sum of the distances of adjacent numbers in that written order?
2013 Cuba MO, 8
Prove that there are infinitely many pairs $(a, b)$ of positive integers with the following properties:
$\bullet$ $a+b$ divides $ab+1$,
$\bullet$ $a-b$ divides $ab -1$,
$\bullet$ $b > 2$ and $a > b\sqrt3 - 1$.
2022 China Team Selection Test, 3
Let $a_1, a_2, \ldots, a_n$ be $n$ positive integers that are not divisible by each other, i.e. for any $i \neq j$, $a_i$ is not divisible by $a_j$. Show that
\[ a_1+a_2+\cdots+a_n \ge 1.1n^2-2n. \]
[i]Note:[/i] A proof of the inequality when $n$ is sufficient large will be awarded points depending on your results.
2003 Junior Balkan Team Selection Tests - Romania, 3
Let $n$ be a positive integer. Prove that there are no positive integers $x$ and $y$ such as $\sqrt{n}+\sqrt{n+1} < \sqrt{x}+\sqrt{y} <\sqrt{4n+2} $
EMCC Guts Rounds, 2010
[u]Round 4[/u]
[b]p13.[/b] What is the units digit of the number $(2^1 + 1)(2^2 - 1)(2^3 + 1)(2^4 - 1)...(2^{2010} - 1)$?
[b]p14.[/b] Mr. Fat noted that on January $2$, $2010$, the display of the day is $01/02/2010$, and the sequence $01022010$ is a palindrome (a number that reads the same forwards and backwards). How many days does Mr. Fat need to wait between this palindrome day and the last palindrome day of this decade?
[b]p15.[/b] Farmer Tim has a $30$-meter by $30$-meter by $30\sqrt2$-meter triangular barn. He ties his goat to the corner where the two shorter sides meet with a 60-meter rope. What is the area, in square meters, of the land where the goat can graze, given that it cannot get inside the barn?
[b]p16.[/b] In triangle $ABC$, $AB = 3$, $BC = 4$, and $CA = 5$. Point $P$ lies inside the triangle and the distances from $P$ to two of the sides of the triangle are $ 1$ and $2$. What is the maximum distance from $P$ to the third side of the triangle?
[u]Round 5[/u]
[b]p17.[/b] Let $Z$ be the answer to the third question on this guts quadruplet. If $x^2 - 2x = Z - 1$, find the positive value of $x$.
[b]p18.[/b] Let $X$ be the answer to the first question on this guts quadruplet. To make a FATRON2012, a cubical steel body as large as possible is cut out from a solid sphere of diameter $X$. A TAFTRON2013 is created by cutting a FATRON2012 into $27$ identical cubes, with no material wasted. What is the length of one edge of a TAFTRON2013?
[b]p19.[/b] Let $Y$ be the smallest integer greater than the answer to the second question on this guts quadruplet. Fred posts two distinguishable sheets on the wall. Then, $Y$ people walk into the room. Each of the Y people signs up on $0, 1$, or $2$ of the sheets. Given that there are at least two people in the room other than Fred, how many possible pairs of lists can Fred have?
[b]p20.[/b] Let $A, B, C$, be the respective answers to the first, second, and third questions on this guts quadruplet. At the Robot Design Convention and Showcase, a series of robots are programmed such that each robot shakes hands exactly once with every other robot of the same height. If the heights of the $16$ robots are $4$, $4$, $4$, $5$, $5$, $7$, $17$, $17$, $17$, $34$, $34$, $42$, $100$, $A$, $B$, and $C$ feet, how many handshakes will take place?
[u]Round 6[/u]
[b]p21.[/b] Determine the number of ordered triples $(p, q, r)$ of primes with $1 < p < q < r < 100$ such that $q - p = r - q$.
[b]p22.[/b] For numbers $a, b, c, d$ such that $0 \le a, b, c, d \le 10$, find the minimum value of $ab + bc + cd + da - 5a - 5b - 5c - 5d$.
[b]p23.[/b] Daniel has a task to measure $1$ gram, $2$ grams, $3$ grams, $4$ grams , ... , all the way up to $n$ grams. He goes into a store and buys a scale and six weights of his choosing (so that he knows the value for each weight that he buys). If he can place the weights on either side of the scale, what is the maximum value of $n$?
[b]p24.[/b] Given a Rubik’s cube, what is the probability that at least one face will remain unchanged after a random sequence of three moves? (A Rubik’s cube is a $3$ by $3$ by $3$ cube with each face starting as a different color. The faces ($3$ by $3$) can be freely turned. A move is defined in this problem as a $90$ degree rotation of one face either clockwise or counter-clockwise. The center square on each face–six in total–is fixed.)
PS. You should use hide for answers. First rounds have been posted [url=https://artofproblemsolving.com/community/c4h2766534p24230616]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2002 China Team Selection Test, 3
For positive integers $a,b,c$ let $ \alpha, \beta, \gamma$ be pairwise distinct positive integers such that
\[ \begin{cases}{c} \displaystyle a &= \alpha + \beta + \gamma, \\
b &= \alpha \cdot \beta + \beta \cdot \gamma + \gamma \cdot \alpha, \\
c^2 &= \alpha\beta\gamma. \end{cases} \]
Also, let $ \lambda$ be a real number that satisfies the condition
\[\lambda^4 -2a\lambda^2 + 8c\lambda + a^2 - 4b = 0.\]
Prove that $\lambda$ is an integer if and only if $\alpha, \beta, \gamma$ are all perfect squares.
II Soros Olympiad 1995 - 96 (Russia), 11.6
For what natural number $x$ will the value of the polynomial $x^3+7x^2+6x+1$ be the cube of a natural number?
2016 Purple Comet Problems, 14
Find the greatest possible value of $pq + r$, where p, q, and r are (not necessarily distinct) prime numbers satisfying $pq + qr + rp = 2016$.
2014 Saudi Arabia BMO TST, 2
Prove that among any $16$ perfect cubes we can always find two cubes whose difference is divisible by $91$.
2015 Cono Sur Olympiad, 1
Show that, for any integer $n$, the number $n^3 - 9n + 27$ is not divisible by $81$.
1983 Bundeswettbewerb Mathematik, 3
A real number is called [i]triplex[/i] if it has a decimal representation in which none of $0$ and $3$ different digit occurs. Prove that every positive real number is the sum of nine triplex numbers.
2000 Baltic Way, 14
Find all positive integers $n$ such that $n$ is equal to $100$ times the number of positive divisors of $n$.