Found problems: 15460
2009 IMO Shortlist, 6
Let $k$ be a positive integer. Show that if there exists a sequence $a_0,a_1,\ldots$ of integers satisfying the condition \[a_n=\frac{a_{n-1}+n^k}{n}\text{ for all } n\geq 1,\] then $k-2$ is divisible by $3$.
[i]Proposed by Okan Tekman, Turkey[/i]
1991 Tournament Of Towns, (281) 1
$N$ integers are given. Prove that the sum of their squares is divisible by $N$ if it is known that the difference between the product of any $N - 1$ of them and the last one is divisible by $N$.
(D. Fomin, Leningrad)
2020 Saint Petersburg Mathematical Olympiad, 4.
Let $m$ be a given positive integer. Prove that there exists a positive integer $k$ such that it holds
$$1\leq \frac{1^m+2^m+3^m+\ldots +(k-1)^m}{k^m}<2.$$
IV Soros Olympiad 1997 - 98 (Russia), 11.5
Find all integers $n$ for which $\log_{2n-2} (n^2 + 2)$ is a rational number.
2018 Hong Kong TST, 4
Find infinitely many positive integers $m$ such that for each $m$, the number $\dfrac{2^{m-1}-1}{8191m}$ is an integer.
2016 Serbia Additional Team Selection Test, 3
Let $w(x)$ be largest odd divisor of $x$. Let $a,b$ be natural numbers such that $(a,b)=1$ and \\
$a+w(b+1)$ and $b+w(a+1)$ are powers of two. Prove that $a+1$ and $b+1$ are powers of two.
2004 South africa National Olympiad, 6
The numbers $a_1,a_2$ and $a_3$ are distinct positive integers, such that
(i) $a_1$ is a divisor of $a_2+a_3+a_2a_3$;
(ii) $a_2$ is a divisor of $a_3+a_1+a_3a_1$;
(iii) $a_3$ is a divisor of $a_1+a_2+a_1a_2$.
Prove that $a_1,a_2$ and $a_3$ cannot all be prime.
2007 All-Russian Olympiad Regional Round, 9.7
An infinite increasing arithmetical progression consists of positive integers and contains a perfect cube. Prove that this progression also contains a term which is a perfect cube but not a perfect square.
2016 Saint Petersburg Mathematical Olympiad, 1
Sasha multiplied all the divisors of the natural number $n$. Fedya increased each divider by $1$, and then multiplied the results. If the product found Fedya is divided by the product found by Sasha , what can $n$ be equal to ?
2020 ITAMO, 2
Determine all the pairs $(a,b)$ of positive integers, such that all the following three conditions are satisfied:
1- $b>a$ and $b-a$ is a prime number
2- The last digit of the number $a+b$ is $3$
3- The number $ab$ is a square of an integer.
2019 BMT Spring, 7
How many distinct ordered pairs of integers $(b, m, t)$ satisfy the equation $b^8+m^4+t^2+1 = 2019$?
2011 China Girls Math Olympiad, 1
Find all positive integers $n$ such that the equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$ has exactly $2011$ positive integer solutions $(x,y)$ where $x \leq y$.
2022 IFYM, Sozopol, 7
Let’s note the set of all integers $n>1$ which are not divisible by a square of a prime number. We define the number $f(n)$ as the greatest amount of divisors of $n$ which could be chosen in such way so that for each two chosen $a$ and $b$, not necessarily different, the number $a^2+ab+b^2+n$ is not a square. Find all $m$ for which there exists $n$ so that $f(n)=m$.
EMCC Guts Rounds, 2011
[u]Round 6[/u]
[b]p16.[/b] Let $a_1, a_2, ... , a_{2011}$ be a sequence of numbers such that $a_1 = 2011$ and $a_1+a_2+...+a_n = n^2 \cdot a_n$ for $n = 1, 2, ... 2011$. (That is, $a_1 = 1^2\cdot a_1$, $a_1 + a_2 = 2^2 \cdot a_2$, $...$) Compute $a_{2011}$.
[b]p17.[/b] Three rectangles, with dimensions $3 \times 5$, $4 \times 2$, and $6 \times 4$, are each divided into unit squares which are alternately colored black and white like a checkerboard. Each rectangle is cut along one of its diagonals into two triangles. For each triangle, let m be the total black area and n the total white area. Find the maximum value of $|m - n|$ for the $6$ triangles.
[b]p18.[/b] In triangle $ABC$, $\angle BAC = 90^o$, and the length of segment $AB$ is $2011$. Let $M$ be the midpoint of $BC$ and $D$ the midpoint of $AM$. Let $E$ be the point on segment $AB$ such that $EM \parallel CD$. What is the length of segment $BE$?
[u]Round 7[/u]
[b]p19.[/b] How many integers from $1$ to $100$, inclusive, can be expressed as the difference of two perfect squares? (For example, $3 = 2^2 - 1^2$).
[b]p20.[/b] In triangle $ABC$, $\angle ABC = 45$ and $\angle ACB = 60^o$. Let $P$ and $Q$ be points on segment $BC$, $F$ a point on segment $AB$, and $E$ a point on segment $AC$ such that $F Q \parallel AC$ and $EP \parallel AB$. Let $D$ be the foot of the altitude from $A$ to $BC$. The lines $AD$, $F Q$, and $P E$ form a triangle. Find the positive difference, in degrees, between the largest and smallest angles of this triangle.
[b]p21.[/b] For real number $x$, $\lceil x \rceil$ is equal to the smallest integer larger than or equal to $x$. For example, $\lceil 3 \rceil = 3$ and $\lceil 2.5 \rceil = 3$. Let $f(n)$ be a function such that $f(n) = \left\lceil \frac{n}{2}\right\rceil + f\left( \left\lceil \frac{n}{2}\right\rceil\right)$ for every integer $n$ greater than $1$. If $f(1) = 1$, find the maximum value of $f(k) - k$, where $k$ is a positive integer less than or equal to $2011$.
[u]Round 8[/u]
The answer to each of the three questions in this round depends on the answer to one of the other questions. There is only one set of correct answers to these problems; however, each question will be scored independently, regardless of whether the answers to the other questions are correct.
[b]p22.[/b] Let $W$ be the answer to problem 24 in this guts round. Let $f(a) = \frac{1}{1 -\frac{1}{1- \frac{1}{a}}}$. Determine$|f(2) + ... + f(W)|$.
[b]p23.[/b] Let $X$ be the answer to problem $22$ in this guts round. How many odd perfect squares are less than $8X$?
[b]p24.[/b] Let $Y$ be the answer to problem $23$ in this guts round. What is the maximum number of points of intersections of two regular $(Y - 5)$-sided polygons, if no side of the first polygon is parallel to any side of the second polygon?
[u]Round 9[/u]
[b]p25.[/b] Cross country skiers $s_1, s_2, s_3, ..., s_7$ start a race one by one in that order. While each skier skis at a constant pace, the skiers do not all ski at the same rate. In the course of the race, each skier either overtakes another skier or is overtaken by another skier exactly two times. Find all the possible orders in which they can finish. Write each possible finish as an ordered septuplet $(a, b, c, d, e, f, g)$ where $a, b, c, d, e, f, g$ are the numbers $1-7$ in some order. (So a finishes first, b finishes second, etc.)
[b]p26.[/b] Archie the Alchemist is making a list of all the elements in the world, and the proportion of earth, air, fire, and water needed to produce each. He writes the proportions in the form E:A:F:W. If each of the letters represents a whole number from $0$ to $4$, inclusive, how many different elements can Archie list? Note that if Archie lists wood as $2:0:1:2$, then $4:0:2:4$ would also produce wood. In addition, $0:0:0:0$ does not produce an element.
[b]p27.[/b] Let $ABCD$ be a rectangle with $AB = 10$ and $BC = 12$. Let $M$ be the midpoint of $CD$, and $P$ be the point on $BM$ such that $DP = DA$. Find the area of quadrilateral $ABPD$.
[u]Round 10[/u]
[b]p28.[/b] David the farmer has an infinitely large grass-covered field which contains a straight wall. He ties his cow to the wall with a rope of integer length. The point where David ties his rope to the wall divides the wall into two parts of length $a$ and $b$, where $a > b$ and both are integers. The rope is shorter than the wall but is longer than $a$. Suppose that the cow can reach grass covering an area of $\frac{165\pi}{2}$. Find the ratio $\frac{a}{b}$ . You may assume that the wall has $0$ width.
[b]p29.[/b] Let $S$ be the number of ordered quintuples $(a, b, x, y, n)$ of positive integers such that $$\frac{a}{x}+\frac{b}{y}=\frac{1}{n}$$ $$abn = 2011^{2011}$$ Compute the remainder when $S$ is divided by $2012$.
[b]p30.[/b] Let $n$ be a positive integer. An $n \times n$ square grid is formed by $n^2$ unit squares. Each unit square is then colored either red or blue such that each row or column has exactly $10$ blue squares. A move consists of choosing a row or a column, and recolor each unit square in the chosen row or column – if it is red, we recolor it blue, and if it is blue, we recolor it red. Suppose that it is possible to obtain fewer than $10n$ blue squares after a sequence of finite number of moves. Find the maximum possible value of $n$.
PS. You should use hide for answers. First rounds have been posted [url=https://artofproblemsolving.com/community/c4h2786905p24497746]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2021 JBMO Shortlist, N1
Find all positive integers $a, b, c$ such that $ab + 1$, $bc + 1$, and $ca + 1$ are all equal to
factorials of some positive integers.
Proposed by [i]Nikola Velov, Macedonia[/i]
2019 LIMIT Category B, Problem 8
Given a regular polygon with $p$ sides, where $p$ is a prime number. After rotating this polygon about its center by an integer number of degrees it coincides with itself. What is the maximal possible number for $p$?
1985 IMO Longlists, 23
Let $\mathbb N = {1, 2, 3, . . .}$. For real $x, y$, set $S(x, y) = \{s | s = [nx+y], n \in \mathbb N\}$. Prove that if $r > 1$ is a rational number, there exist real numbers $u$ and $v$ such that
\[S(r, 0) \cap S(u, v) = \emptyset, S(r, 0) \cup S(u, v) = \mathbb N.\]
2021 South East Mathematical Olympiad, 7
Determine all the pairs of positive odd integers $(a,b),$ such that $a,b>1$ and $$7\varphi^2(a)-\varphi(ab)+11\varphi^2(b)=2(a^2+b^2),$$ where $\varphi(n)$ is Euler's totient function.
2021 South East Mathematical Olympiad, 4
For positive integer $k,$ we say that it is a [i]Taurus integer[/i] if we can delete one element from the set $M_k=\{1,2,\cdots,k\},$ such that the sum of remaining $k-1$ elements is a positive perfect square. For example, $7$ is a Taurus integer, because if we delete $3$ from $M_7=\{1,2,3,4,5,6,7\},$ the sum of remaining $6$ elements is $25,$ which is a positive perfect square.
$(1)$ Determine whether $2021$ is a Taurus integer.
$(2)$ For positive integer $n,$ determine the number of Taurus integers in $\{1,2,\cdots,n\}.$
2020 Stars of Mathematics, 4
Let $a_0 = 1, \ a_1 = 2,$ and $a_2 = 10,$ and define $a_{k+2} = a_{k+1}^3+a_k^2+a_{k-1}$ for all positive integers $k.$ Is it possible for some $a_x$ to be divisible by $2021^{2021}?$
[i]Flavian Georgescu[/i]
2023 JBMO Shortlist, N6
[b]Version 1.[/b] Find all primes $p$ satisfying the following conditions:
(i) $\frac{p+1}{2}$ is a prime number.
(ii) There are at least three distinct positive integers $n$ for which $\frac{p^2+n}{p+n^2}$ is an integer.
[b]Version 2.[/b] Let $p \neq 5$ be a prime number such that $\frac{p+1}{2}$ is also a prime. Suppose there exist positive integers $a <b$ such that $\frac{p^2+a}{p+a^2}$ and $\frac{p^2+b}{p+b^2}$ are integers. Show that $b=(a-1)^2+1$.
2003 Moldova National Olympiad, 10.1
Find all prime numbers $ a,b,c$ that fulfill the equality:
$ (a\minus{}2)!\plus{}2b!\equal{}22c\minus{}1$
2014 Contests, 2
find all polynomials with integer coefficients that $P(\mathbb{Z})= ${$p(a):a\in \mathbb{Z}$} has a Geometric progression.
DMM Individual Rounds, 2010
[b]p1.[/b] Ana, Bob, Cho, Dan, and Eve want to use a microwave. In order to be fair, they choose a random order to heat their food in (all orders have equal probability). Ana's food needs $5$ minutes to cook, Bob's food needs $7$ minutes, Cho's needs $1$ minute, Dan's needs $12$ minutes, and Eve's needs $5$ minutes. What is the expected number of minutes Bob has to wait for his food to be done?
[b]p2.[/b] $ABC$ is an equilateral triangle. $H$ lies in the interior of $ABC$, and points $X$, $Y$, $Z$ lie on sides $AB, BC, CA$, respectively, such that $HX\perp AB$, $HY \perp BC$, $HZ\perp CA$. Furthermore, $HX =2$, $HY = 3$, $HZ = 4$. Find the area of triangle $ABC$.
[b]p3.[/b] Amy, Ben, and Chime play a dice game. They each take turns rolling a die such that the $first$ person to roll one of his favorite numbers wins. Amy's favorite number is $1$, Ben's favorite numbers are $2$ and $3$, and Chime's are $4$, $5$, and $6$. Amy rolls first, Ben rolls second, and Chime rolls third. If no one has won after Chime's turn, they repeat the sequence until someone has won. What's the probability that Chime wins the game?
[b]p4.[/b] A point $P$ is chosen randomly in the interior of a square $ABCD$. What is the probability that the angle $\angle APB$ is obtuse?
[b]p5.[/b] Let $ABCD$ be the quadrilateral with vertices $A = (3, 9)$, $B = (1, 1)$, $C = (5, 3)$, and $D = (a, b)$, all of which lie in the first quadrant. Let $M$ be the midpoint of $AB$, $N$ the midpoint of $BC$, $O$ the midpoint of $CD$, and $P$ the midpoint of $AD$. If $MNOP$ is a square, find $(a, b)$.
[b]p6.[/b] Let $M$ be the number of positive perfect cubes that divide $60^{60}$. What is the prime factorization of $M$?
[b]p7.[/b] Given that $x$, $y$, and $z$ are complex numbers with $|x|=|y| =|z|= 1$, $x + y + z = 1$ and $xyz = 1$, find $|(x + 2)(y + 2)(z + 2)|$.
[b]p8.[/b] If $f(x)$ is a polynomial of degree $2008$ such that $f(m) = \frac{1}{m}$ for $m = 1, 2, ..., 2009$, find $f(2010)$.
[b]p9.[/b] A drunkard is randomly walking through a city when he stumbles upon a $2 \times 2$ sliding tile puzzle. The puzzle consists of a $2 \times 2$ grid filled with a blank square, as well as $3$ square tiles, labeled $1$, $2$, and $3$. During each turn you may fill the empty square by sliding one of the adjacent tiles into it. The following image shows the puzzle's correct state, as well as two possible moves you can make:
[img]https://cdn.artofproblemsolving.com/attachments/c/6/7ddd9305885523deeee2a530dc90505875d1cc.png[/img]
Assuming that the puzzle is initially in an incorrect (but solvable) state, and that the drunkard will make completely random moves to try and solve it, how many moves is he expected to make before he restores the puzzle to its correct state?
[b]p10.[/b] How many polynomials $p(x)$ exist such that the coeffients of $p(x)$ are a rearrangement of $\{0, 1, 2, .., deg \, p(x)\}$ and all of the roots of $p(x)$ are rational? (Note that the leading coefficient of $p(x)$ must be nonzero.)
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Moldova Team Selection Test, 5
The sequence of polynomials $\left( P_{n}(X)\right)_{n\in Z_{>0}}$ is defined as follows:
$P_{1}(X)=2X$
$P_{2}(X)=2(X^2+1)$
$P_{n+2}(X)=2X\cdot P_{n+1}(X)-(X^2-1)P_{n}(X)$, for all positive integers $n$.
Find all $n$ for which $X^2+1\mid P_{n}(X)$