This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2013 Dutch Mathematical Olympiad, 4

For a positive integer n the number $P(n)$ is the product of the positive divisors of $n$. For example, $P(20) = 8000$, as the positive divisors of $20$ are $1, 2, 4, 5, 10$ and $20$, whose product is $1 \cdot 2 \cdot 4 \cdot 5 \cdot 10 \cdot 20 = 8000$. (a) Find all positive integers $n$ satisfying $P(n) = 15n$. (b) Show that there exists no positive integer $n$ such that $P(n) = 15n^2$.

2012 Middle European Mathematical Olympiad, 4

The sequence $ \{ a_n \} _ { n \ge 0 } $ is defined by $ a_0 = 2 , a_1 = 4 $ and \[ a_{n+1} = \frac{a_n a_{n-1}}{2} + a_n + a_{n-1} \] for all positive integers $ n $. Determine all prime numbers $ p $ for which there exists a positive integer $ m $ such that $ p $ divides the number $ a_m - 1 $.

2022 LMT Fall, 1 Tetris

Tetris is a Soviet block game developed in $1984$, probably to torture misbehaving middle school children. Nowadays, Tetris is a game that people play for fun, and we even have a mini-event featuring it, but it shall be used on this test for its original purpose. The $7$ Tetris pieces, which will be used in various problems in this theme, are as follows: [img]https://cdn.artofproblemsolving.com/attachments/b/c/f4a5a2b90fcf87968b8f2a1a848ad32ef52010.png[/img] [b]p1.[/b] Each piece has area $4$. Find the sum of the perimeters of each of the $7$ Tetris pieces. [b]p2.[/b] In a game of Tetris, Qinghan places $4$ pieces every second during the first $2$ minutes, and $2$ pieces every second for the remainder of the game. By the end of the game, her average speed is $3.6$ pieces per second. Find the duration of the game in seconds. [b]p3.[/b] Jeff takes all $7$ different Tetris pieces and puts them next to each other to make a shape. Each piece has an area of $4$. Find the least possible perimeter of such a shape. [b]p4.[/b] Qepsi is playing Tetris, but little does she know: the latest update has added realistic physics! She places two blocks, which form the shape below. Tetrominoes $ABCD$ and $EFGHI J$ are both formed from $4$ squares of side length $1$. Given that $CE = CF$, the distance from point $I$ to the line $AD$ can be expressed as $\frac{A\sqrt{B}-C}{D}$ . Find $1000000A+10000B +100C +D$. [img]https://cdn.artofproblemsolving.com/attachments/9/a/5e96a855b9ebbfd3ea6ebee2b19d7c0a82c7c3.png[/img] [b]p5.[/b] Using the following tetrominoes: [img]https://cdn.artofproblemsolving.com/attachments/3/3/464773d41265819c4f452116c1508baa660780.png[/img] Find the number of ways to tile the shape below, with rotation allowed, but reflection disallowed: [img]https://cdn.artofproblemsolving.com/attachments/d/6/943a9161ff80ba23bb8ddb5acaf699df187e07.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1971 IMO Longlists, 4

Let $x_n=2^{2^{n}}+1$ and let $m$ be the least common multiple of $x_2, x_3, \ldots, x_{1971}.$ Find the last digit of $m.$

KoMaL A Problems 2021/2022, A. 818

Find all pairs of positive integers $m, n$ such that $9^{|m-n|}+3^{|m-n|}+1$ is divisible by $m$ and $n$ simultaneously.

2019 PUMaC Algebra B, 1

Let $a,b$ be positive integers such that $a+b=10$. Let $\tfrac{p}{q}$ be the difference between the maximum and minimum possible values of $\tfrac{1}{a}+\tfrac{1}{b}$, where $p$ and $q$ are relatively prime positive integers. Compute $p+q$.

2009 Croatia Team Selection Test, 4

Determine all natural $ n$ for which there exists natural $ m$ divisible by all natural numbers from 1 to $ n$ but not divisible by any of the numbers $ n \plus{} 1$, $ n \plus{} 2$, $ n \plus{} 3$.

2007 Iran MO (3rd Round), 6

Something related to this [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=845756#845756]problem[/url]: Prove that for a set $ S\subset\mathbb N$, there exists a sequence $ \{a_{i}\}_{i \equal{} 0}^{\infty}$ in $ S$ such that for each $ n$, $ \sum_{i \equal{} 0}^{n}a_{i}x^{i}$ is irreducible in $ \mathbb Z[x]$ if and only if $ |S|\geq2$. [i]By Omid Hatami[/i]

2015 China Northern MO, 7

It is known that odd prime numbers $x, y z$ satisfy $$x|(y^5+1),y|(z^5+1),z|(x^5+1).$$ Find the minimum value of the product $xyz$.

2006 Victor Vâlcovici, 3

Let $ p\ge 2 $ be a natural number that divides $ \binom{p}{k} , $ for any natural number $ k $ smaller than $ p. $ Prove that: [b]a)[/b] $ p $ is prime. [b]b)[/b] $ p^2 $ divides $ -2+\binom{2p}{p} . $

2018 CMI B.Sc. Entrance Exam, 3

Let $f$ be a function on non-negative integers defined as follows $$f(2n)=f(f(n))~~~\text{and}~~~f(2n+1)=f(2n)+1$$ [b](a)[/b] If $f(0)=0$ , find $f(n)$ for every $n$. [b](b)[/b] Show that $f(0)$ cannot equal $1$. [b](c)[/b] For what non-negative integers $k$ (if any) can $f(0)$ equal $2^k$ ?

1994 IMO Shortlist, 3

Show that there exists a set $ A$ of positive integers with the following property: for any infinite set $ S$ of primes, there exist [i]two[/i] positive integers $ m$ in $ A$ and $ n$ not in $ A$, each of which is a product of $ k$ distinct elements of $ S$ for some $ k \geq 2$.

2005 Postal Coaching, 8

Prove that For all positive integers $m$ and $n$ , one has $| n \sqrt{2005} - m | > \frac{1}{90n}$

2002 Paraguay Mathematical Olympiad, 3

With three different digits, six-digit numbers are written, multiples of $3$. One of the the digits are in the unit's place, another in the hundred's place, and the third in the remaining places. If we take out two units from the hundred's digit and add these to the unit's digit, the number is left with all the same digits. Find the numbers.

1991 China Team Selection Test, 2

Let $f$ be a function $f: \mathbb{N} \cup \{0\} \mapsto \mathbb{N},$ and satisfies the following conditions: (1) $f(0) = 0, f(1) = 1,$ (2) $f(n+2) = 23 \cdot f(n+1) + f(n), n = 0,1, \ldots.$ Prove that for any $m \in \mathbb{N}$, there exist a $d \in \mathbb{N}$ such that $m | f(f(n)) \Leftrightarrow d | n.$

2018 Mexico National Olympiad, 5

Let $n\geq 5$ an integer and consider a regular $n$-gon. Initially, Nacho is situated in one of the vertices of the $n$-gon, in which he puts a flag. He will start moving clockwise. First, he moves one position and puts another flag, then, two positions and puts another flag, etcetera, until he finally moves $n-1$ positions and puts a flag, in such a way that he puts $n$ flags in total. ¿For which values of $n$, Nacho will have put a flag in each of the $n$ vertices?

2024 JHMT HS, 1

Compute the smallest positive integer $N$ for which $N \cdot 2^{2024}$ is a multiple of $2024$.

KoMaL A Problems 2020/2021, A. 787

Let $p_n$ denote the $n^{\text{th}}$ prime number and define $a_n=\lfloor p_n\nu\rfloor$ for all positive integers $n$ where $\nu$ is a positive irrational number. Is it possible that there exist only finitely many $k$ such that $\binom{2a_k}{a_k}$ is divisible by $p_i^{10}$ for all $i=1,2,\ldots,2020?$ [i]Proposed by Superguy and ayan.nmath[/i]

2015 Federal Competition For Advanced Students, 4

A [i]police emergency number[/i] is a positive integer that ends with the digits $133$ in decimal representation. Prove that every police emergency number has a prime factor larger than $7$. (In Austria, $133$ is the emergency number of the police.) (Robert Geretschläger)

2016 BMT Spring, 1

What is the sum of all positive integers less than $30$ divisible by $2, 3$, or $5$?

LMT Guts Rounds, 2019 F

[u]Round 9[/u] [b]p25.[/b] Find the largest prime factor of $1031301$. [b]p26.[/b] Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $\angle ABC = 90^o$ , $AB = 5$, $BC = 20$, $CD = 15$. Let $X$, $Y$ be the intersection of the circle with diameter $BC$ and segment $AD$. Find the length of $XY$. [b]p27.[/b] A string consisting of $1$’s, $2$’s, and $3$’s is said to be a superpermutation of the string $123$ if it contains every permutation of $123$ as a contiguous substring. Find the smallest possible length of such a superpermutation. [u]Round 10[/u] [b]p28.[/b] Suppose that we have a function $f (x) = x^3 -3x^2 +3x$, and for all $n \ge 1$, $f^n(x)$ is defined by the function $f$ applied $n$ times to $x$. Find the remainder when $f^5(2019)$ is divided by $100$. [b]p29.[/b] A function $f : {1,2, . . . ,10} \to {1,2, . . . ,10}$ is said to be happy if it is a bijection and for all $n \in {1,2, . . . ,10}$, $|n - f (n)| \le 1$. Compute the number of happy functions. [b]p30.[/b] Let $\vartriangle LMN$ have side lengths $LM = 15$, $MN = 14$, and $NL = 13$. Let the angle bisector of $\angle MLN$ meet the circumcircle of $\vartriangle LMN$ at a point $T \ne L$. Determine the area of $\vartriangle LMT$ . [u]Round 11[/u] [b]p31.[/b] Find the value of $$\sum_{d|2200} \tau (d),$$ where $\tau (n)$ denotes the number of divisors of $n$, and where $a|b$ means that $\frac{b}{a}$ is a positive integer. [b]p32.[/b] Let complex numbers $\omega_1,\omega_2, ...,\omega_{2019}$ be the solutions to the equation $x^{2019}-1 = 0$. Evaluate $$\sum^{2019}_{i=1} \frac{1}{1+ \omega_i}.$$ [b]p33.[/b] Let $M$ be a nonnegative real number such that $x^{x^{x^{...}}}$ diverges for all $x >M$, and $x^{x^{x^{...}}}$ converges for all $0 < x \le M$. Find $M$. [u]Round 12[/u] [b]p34.[/b] Estimate the number of digits in ${2019 \choose 1009}$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$ [b]p35.[/b] You may submit any integer $E$ from $1$ to $30$. Out of the teams that submit this problem, your score will be $$\frac{E}{2 \, (the\,\, number\,\, of\,\, teams\,\, who\,\, chose\,\, E)}$$ [b]p36.[/b] We call a $m \times n$ domino-tiling a configuration of $2\times 1$ dominoes on an $m\times n$ cell grid such that each domino occupies exactly $2$ cells of the grid and all cells of the grid are covered. How many $8 \times 8$ domino-tilings are there? If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166016p28809598]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3166019p28809679]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Iran Team Selection Test, 4

Find all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ such that for all triples $a,b,c$ of positive integers the following holds : $$f(ac)+f(bc)-f(c)f(ab) \ge 1$$ Proposed by [i]Mojtaba Zare[/i]

2019 239 Open Mathematical Olympiad, 2

Is it true that there are $130$ consecutive natural numbers, such that each of them has exactly $900$ natural divisors?

2008 Federal Competition For Advanced Students, Part 2, 2

Which positive integers are missing in the sequence $ \left\{a_n\right\}$, with $ a_n \equal{} n \plus{} \left[\sqrt n\right] \plus{}\left[\sqrt [3]n\right]$ for all $ n \ge 1$? ($ \left[x\right]$ denotes the largest integer less than or equal to $ x$, i.e. $ g$ with $ g \le x < g \plus{} 1$.)

2016 JBMO Shortlist, 5

Determine all four-digit numbers $\overline{abcd} $ such that $(a + b)(a + c)(a + d)(b + c)(b + d)(c + d) =\overline{abcd} $: