Found problems: 15460
2019 AIME Problems, 9
Let $\tau (n)$ denote the number of positive integer divisors of $n$. Find the sum of the six least positive integers $n$ that are solutions to $\tau (n) + \tau (n+1) = 7$.
1998 Poland - Second Round, 4
Find all pairs of integers $(x,y)$ satisfying $x^2 +3y^2 = 1998x$.
1989 Romania Team Selection Test, 2
The sequence ($a_n$) is defined by $a_1 = a_2 = 1, a_3 = 199$ and $a_{n+1} =\frac{1989+a_na_{n-1}}{a_{n-2}}$ for all $n \ge 3$. Prove that all terms of the sequence are positive integers
2022 JBMO Shortlist, N3
Find all quadruples of positive integers $(p, q, a, b)$, where $p$ and $q$ are prime numbers and $a > 1$, such that $$p^a = 1 + 5q^b.$$
2023 ITAMO, 1
Let $a, b$ be positive integers such that $54^a=a^b$. Prove that $a$ is a power of $54$.
2003 AIME Problems, 2
One hundred concentric circles with radii $1, 2, 3, \dots, 100$ are drawn in a plane. The interior of the circle of radius 1 is colored red, and each region bounded by consecutive circles is colored either red or green, with no two adjacent regions the same color. The ratio of the total area of the green regions to the area of the circle of radius 100 can be expressed as $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2015 Romania Team Selection Tests, 3
Define a sequence of integers by $a_0=1$ , and $a_n=\sum_{k=0}^{n-1} \binom{n}{k}a_k$ , $n \geq 1$ . Let $m$ be a positive integer , let $p$ be a prime , and let $q$ and $r$ be non-negative integers . Prove that :
$$a_{p^mq+r} \equiv a_{p^{m-1}q+r} \pmod{p^m}$$
2016 Iran Team Selection Test, 1
Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.
2014 Contests, 1
Four consecutive three-digit numbers are divided respectively by four consecutive two-digit numbers. What minimum number of different remainders can be obtained?
[i](A. Golovanov)[/i]
2020 Tournament Of Towns, 1
$2020$ positive integers are written in one line. Each of them starting with the third is divisible by previous and by the sum of two previous numbers. What is the smallest value the last number can take?
A. Gribalko
2022 USAJMO, 1
For which positive integers $m$ does there exist an infinite arithmetic sequence of integers $a_1, a_2, . . .$ and an infinite geometric sequence of integers $g_1, g_2, . . .$ satisfying the following properties?
[list]
[*] $a_n - g_n$ is divisible by $m$ for all integers $n \ge 1$;
[*] $a_2 - a_1$ is not divisible by $m$.
[/list]
[i]Holden Mui[/i]
2024 Malaysian APMO Camp Selection Test, 1
Let $a_1<a_2< \cdots$ be a strictly increasing sequence of positive integers. Suppose there exist $N$ such that for all $n>N$, $$a_{n+1}\mid a_1+a_2+\cdots+a_n$$ Prove that there exist $M$ such that $a_{m+1}=2a_m$ for all $m>M$.
[i]Proposed by Ivan Chan Kai Chin[/i]
1994 IMO, 4
Find all ordered pairs $ (m,n)$ where $ m$ and $ n$ are positive integers such that $ \frac {n^3 \plus{} 1}{mn \minus{} 1}$ is an integer.
MMPC Part II 1996 - 2019, 2006
[b]p1.[/b] Suppose $A$, $B$ and $C$ are the angles of a triangle. Prove that
$$1 - 8 \cos A\cos B \cos C = sin^2(B - C) + (cos(B - C) - 2 cosA)^2.$$
[b]p2.[/b] Let $x_1, x_2,..., x_{100}$ be integers whose values are either $0$ or $1$.
(a) Show that $$x_1 + x_2 + ... + x_{100} - (x_1x_2 + x_2x_3 + ... + x_{99}x_{100} + x_{100}x_1)\le 50.$$
(b) Give specific values for $x_1, x_2,..., x_{100}$ that give equality.
[b]p3.[/b] Let $ABCD$ be a trapezoid whose area is $32$ square meters. Suppose the lengths of the parallel segments $AB$ and $DC$ are $2$ meters and $6$ meters, respectively, and $P$ is the intersection of the diagonals $AC$ and $BD$. If a line through $P$ intersects $AD$ and $BC$ at $E$ and $F$, respectively, determine, with a proof, the minimum possible area for quadrilateral $ABFE$.
[b]p4.[/b] Let $n$ be a positive integer and $x$ be a real number. Show that
$$\lfloor nx \rfloor = \lfloor x \rfloor +\left\lfloor x + \frac{1}{n} \right\rfloor + \left\lfloor x + \frac{2}{n} \right\rfloor + ... + \left\lfloor x + \frac{n - 1}{n} \right\rfloor$$
where $\lfloor a \rfloor$ is the greatest integer less than or equal to $a$. (For example, $\lfloor 4.5\rfloor = 4$ and $\lfloor - 4.5 \rfloor = -5$.)
[b]p5.[/b] A $3n$-digit positive integer (in base $10$) containing no zero is said to be [i]quad-perfect[/i] if the number is a perfect square and each of the three numbers obtained by viewing the first $n$ digits, the middle $n$ digits and the last $n$ digits as three $n$-digit numbers is in itself a perfect square. (For example, when $n = 1$, the only quad-perfect numbers are $144$ and $441$.) Find all $9$-digit quad-perfect numbers.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Kvant 2024, M2779
Prove that for any natural number $k{}$ there is a natural number $n{}$ such that $\mathrm{lcm}(1,2,\ldots,n)=\mathrm{lcm}(1,2,\ldots,n+k).$
[i]From the folklore[/i]
2011 India National Olympiad, 3
Let $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ and $Q(x)=b_nx^n+b_{n-1}x^{n-1}+\cdots+b_0$ be two polynomials with integral coefficients such that $a_n-b_n$ is a prime and $a_nb_0-a_0b_n\neq 0,$ and $a_{n-1}=b_{n-1}.$ Suppose that there exists a rational number $r$ such that $P(r)=Q(r)=0.$ Prove that $r\in\mathbb Z.$
PEN A Problems, 25
Show that ${2n \choose n} \; \vert \; \text{lcm}(1,2, \cdots, 2n)$ for all positive integers $n$.
2004 Iran MO (3rd Round), 21
$ a_1, a_2, \ldots, a_n$ are integers, not all equal. Prove that there exist infinitely many prime numbers $ p$ such that for some $ k$
\[ p\mid a_1^k \plus{} \dots \plus{} a_n^k.\]
2006 Purple Comet Problems, 7
Heather and Kyle need to mow a lawn and paint a room. If Heather does both jobs by herself, it will take her a total of nine hours. If Heather mows the lawn and, after she finishes, Kyle paints the room, it will take them a total of eight hours. If Kyle mows the lawn and, after he finishes, Heather paints the room, it will take them a total of seven hours. If Kyle does both jobs by himself, it will take him a total of six hours. It takes Kyle twice as long to paint the room as it does for him to mow the lawn. The number of hours it would take the two of them to complete the two tasks if they worked together to mow the lawn and then worked together to paint the room is a fraction $\tfrac{m}{n}$where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2022 AMC 12/AHSME, 23
Let $h_n$ and $k_n$ be the unique relatively prime positive integers such that
\[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \frac{h_n}{k_n}.\]
Let $L_n$ denote the least common multiple of the numbers $1, 2, 3,\cdots, n$. For how many integers $n$ with $1 \le n \le 22$ is $k_n<L_n$?
$\textbf{(A)} ~0 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~7 \qquad\textbf{(D)} ~8 \qquad\textbf{(E)} ~10 $
2012 Baltic Way, 18
Find all triples $(a,b,c)$ of integers satisfying $a^2 + b^2 + c^2 = 20122012$.
2003 Romania Team Selection Test, 15
In a plane we choose a cartesian system of coordinates. A point $A(x,y)$ in the plane is called an integer point if and only if both $x$ and $y$ are integers. An integer point $A$ is called invisible if on the segment $(OA)$ there is at least one integer point.
Prove that for each positive integer $n$ there exists a square of side $n$ in which all the interior integer points are invisible.
2017 Polish MO Finals, 3
Integers $a_1, a_2, \ldots, a_n$ satisfy
$$1<a_1<a_2<\ldots < a_n < 2a_1.$$
If $m$ is the number of distinct prime factors of $a_1a_2\cdots a_n$, then prove that
$$(a_1a_2\cdots a_n)^{m-1}\geq (n!)^m.$$
1981 Tournament Of Towns, (013) 3
Prove that every real positive number may be represented as a sum of nine numbers whose decimal representation consists of the digits $0$ and $7$.
(E Turkevich)
2003 Cono Sur Olympiad, 6
Show that there exists a sequence of positive integers $x_1, x_2,…x_n,…$ that satisfies the following two conditions:
(i) Every positive integer appears exactly once,
(ii) For every $n=1,2,…$ the partial sum $x_1+x_2+…+x_n$ is divisible by $n^n$.