This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2021 OMMock - Mexico National Olympiad Mock Exam, 2

For which positive integers $n$ does there exist a positive integer $m$ such that among the numbers $m + n, 2m + (n - 1), \dots, nm + 1$, there are no two that share a common factor greater than $1$?

2018 Tuymaada Olympiad, 5

A prime $p$ and a positive integer $n$ are given. The product $$(1^3+1)(2^3+1)...((n-1)^3+1)(n^3+1)$$ is divisible by $p^3$. Prove that $p \leq n+1$. [i]Proposed by Z. Luria[/i]

1991 National High School Mathematics League, 3

Let $a_n$ be the number of such numbers $N$: sum of all digits of $N$ is $n$, and each digit can only be $1,3,4$. Prove that $a_{2n}$ is a perfect square for all $n\in\mathbb{Z}_+$.

1996 Hungary-Israel Binational, 1

Find all integer sequences of the form $ x_i, 1 \le i \le 1997$, that satisfy $ \sum_{k\equal{}1}^{1997} 2^{k\minus{}1} x_{k}^{1997}\equal{}1996\prod_{k\equal{}1}^{1997}x_k$.

2010 All-Russian Olympiad Regional Round, 10.7

Are there three pairwise distinct non-zero integers whose sum is zero and whose sum of thirteenth powers is the square of some natural number?

2022 Saudi Arabia BMO + EGMO TST, 2.3

Let $n$ be an even positive integer. On a board n real numbers are written. In a single move we can erase any two numbers from the board and replace each of them with their product. Prove that for every $n$ initial numbers one can in finite number of moves obtain $n$ equal numbers on the board.

2010 Regional Olympiad of Mexico Northeast, 2

Of all the fractions $\frac{x}{y}$ that satisfy $$\frac{41}{2010}<\frac{x}{y}<\frac{1}{49}$$ find the one with the smallest denominator.

2000 USA Team Selection Test, 3

Let $p$ be a prime number. For integers $r, s$ such that $rs(r^2 - s^2)$ is not divisible by $p$, let $f(r, s)$ denote the number of integers $n \in \{1, 2, \ldots, p - 1\}$ such that $\{rn/p\}$ and $\{sn/p\}$ are either both less than $1/2$ or both greater than $1/2$. Prove that there exists $N > 0$ such that for $p \geq N$ and all $r, s$, \[ \left\lceil \frac{p-1}{3} \right\rceil \le f(r, s) \le \left\lfloor \frac{2(p-1)}{3} \right\rfloor. \]

2009 Germany Team Selection Test, 2

Let $ \left(a_n \right)_{n \in \mathbb{N}}$ defined by $ a_1 \equal{} 1,$ and $ a_{n \plus{} 1} \equal{} a^4_n \minus{} a^3_n \plus{} 2a^2_n \plus{} 1$ for $ n \geq 1.$ Show that there is an infinite number of primes $ p$ such that none of the $ a_n$ is divisible by $ p.$

2014 IMS, 11

Let the equation $a^2 + b^2 + 1=abc$ have answer in $\mathbb{N}$.Prove that $c=3$.

1998 Slovenia National Olympiad, Problem 1

Find all integers $x,y$ which satisfy the equation $xy=20-3x+y$.

2022 Girls in Math at Yale, R4

[b]p10 [/b]Kathy has two positive real numbers, $a$ and $b$. She mistakenly writes $$\log (a + b) = \log (a) + \log( b),$$ but miraculously, she finds that for her combination of $a$ and $b$, the equality holds. If $a = 2022b$, then $b = \frac{p}{q}$ , for positive integers $p, q$ where $gcd(p, q) = 1$. Find $p + q$. [b]p11[/b] Points $X$ and $Y$ lie on sides $AB$ and $BC$ of triangle $ABC$, respectively. Ray $\overrightarrow{XY}$ is extended to point $Z$ such that $A, C$, and $Z$ are collinear, in that order. If triangle$ ABZ$ is isosceles and triangle $CYZ$ is equilateral, then the possible values of $\angle ZXB$ lie in the interval $I = (a^o, b^o)$, such that $0 \le a, b \le 360$ and such that $a$ is as large as possible and $b$ is as small as possible. Find $a + b$. [b]p12[/b] Let $S = \{(a, b) | 0 \le a, b \le 3, a$ and $b$ are integers $\}$. In other words, $S$ is the set of points in the coordinate plane with integer coordinates between $0$ and $3$, inclusive. Prair selects four distinct points in $S$, for each selected point, she draws lines with slope $1$ and slope $-1$ passing through that point. Given that each point in $S$ lies on at least one line Prair drew, how many ways could she have selected those four points?

2009 Regional Olympiad of Mexico Center Zone, 4

Let $N = 2 \: \: \underbrace {99… 9} _{n \,\,\text {times}} \: \: 82 \: \: \underbrace {00… 0} _{n \,\, \text {times} } \: \: 29$. Prove that $N$ can be written as the sum of the squares of $3$ consecutive natural numbers.

2016 Romanian Masters in Mathematic, 3

A $\textit{cubic sequence}$ is a sequence of integers given by $a_n =n^3 + bn^2 + cn + d$, where $b, c$ and $d$ are integer constants and $n$ ranges over all integers, including negative integers. $\textbf{(a)}$ Show that there exists a cubic sequence such that the only terms of the sequence which are squares of integers are $a_{2015}$ and $a_{2016}$. $\textbf{(b)}$ Determine the possible values of $a_{2015} \cdot a_{2016}$ for a cubic sequence satisfying the condition in part $\textbf{(a)}$.

2018 HMNT, 7

Anders is solving a math problem, and he encounters the expression $\sqrt{15!}$. He attempts to simplify this radical as $a\sqrt{b}$ where $a$ and $b$ are positive integers. The sum of all possible values of $ab$ can be expressed in the form $q\cdot 15!$ for some rational number $q$. Find $q$.

2025 Harvard-MIT Mathematics Tournament, 1

Compute the sum of the positive divisors (including $1$) of $9!$ that have units digit $1.$

2021 Balkan MO Shortlist, N5

A natural number $n$ is given. Determine all $(n - 1)$-tuples of nonnegative integers $a_1, a_2, ..., a_{n - 1}$ such that $$\lfloor \frac{m}{2^n - 1}\rfloor + \lfloor \frac{2m + a_1}{2^n - 1}\rfloor + \lfloor \frac{2^2m + a_2}{2^n - 1}\rfloor + \lfloor \frac{2^3m + a_3}{2^n - 1}\rfloor + ... + \lfloor \frac{2^{n - 1}m + a_{n - 1}}{2^n - 1}\rfloor = m$$ holds for all $m \in \mathbb{Z}$.

2016 SGMO, Q5

Let $d_{m} (n)$ denote the last non-zero digit of $n$ in base $m$ where $m,n$ are naturals. Given distinct odd primes $p_1,p_2,\ldots,p_k$, show that there exists infinitely many natural $n$ such that $$d_{2p_i} (n!) \equiv 1 \pmod {p_i}$$ for all $i = 1,2,\ldots,k$.

1994 Greece National Olympiad, 1

Prove that number $2(1991m^2+1993mn+1995n^2)$ where $m,n$ are poitive integers, cannot be a square of an integer.

2012 Saint Petersburg Mathematical Olympiad, 5

$S$ is natural, and $S=d_{1}>d_2>...>d_{1000000}=1$ are all divisors of $S$. What minimal number of divisors can have $d_{250}$?

2001 Argentina National Olympiad, 4

Find all positive integers $k$ that can be expressed as the sum of $50$ fractions such that the numerators are the $50$ natural numbers from $1$ to $50$ and the denominators are positive integers, that is, $k = \dfrac{1}{a_1} + \dfrac{2}{a_2} + \ldots + \dfrac{50}{a_{50}}$ with a$_1 , a_2 , \ldots , a_n$ positive integers.

2008 Finnish National High School Mathematics Competition, 3

Solve the diophantine equation \[x^{2008}- y^{2008} = 2^{2009}.\]

1995 Brazil National Olympiad, 2

Find all real-valued functions on the positive integers such that $f(x + 1019) = f(x)$ for all $x$, and $f(xy) = f(x) f(y)$ for all $x,y$.

LMT Team Rounds 2021+, 8

An odd positive integer $n$ can be expressed as the sum of two or more consecutive integers in exactly $2023$ ways. Find the greatest possible nonnegative integer $k$ such that $3^k$ is a factor of the least possible value of $n$.

2019 China Team Selection Test, 4

Does there exist a finite set $A$ of positive integers of at least two elements and an infinite set $B$ of positive integers, such that any two distinct elements in $A+B$ are coprime, and for any coprime positive integers $m,n$, there exists an element $x$ in $A+B$ satisfying $x\equiv n \pmod m$ ? Here $A+B=\{a+b|a\in A, b\in B\}$.