Found problems: 15460
2007 Peru Iberoamerican Team Selection Test, P2
Find all positive integer solutions of the equation
$n^5+n^4=7^{m}-1$
2003 France Team Selection Test, 3
Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.
2004 May Olympiad, 1
Julián writes five positive integers, not necessarily different, such that their product is equal to their sum. What could be the numbers that Julian writes?
2019 China Team Selection Test, 4
Prove that there exist a subset $A$ of $\{1,2,\cdots,2^n\}$ with $n$ elements, such that for any two different non-empty subset of $A$, the sum of elements of one subset doesn't divide another's.
2016 Azerbaijan JBMO TST, 3
Find all the pime numbers $(p,q)$ such that :
$p^{3}+p=q^{2}+q$
2017 ELMO Shortlist, 3
For each integer $C>1$ decide whether there exist pairwise distinct positive integers $a_1,a_2,a_3,...$ such that for every $k\ge 1$, $a_{k+1}^k$ divides $C^ka_1a_2...a_k$.
[i]Proposed by Daniel Liu
1976 Vietnam National Olympiad, 1
Find all integer solutions to $m^{m+n} = n^{12}, n^{m+n} = m^3$.
2019 Serbia Team Selection Test, P5
Solve the equation in nonnegative integers:\\
$2^x=5^y+3$
2012 Online Math Open Problems, 34
$p,q,r$ are real numbers satisfying \[\frac{(p+q)(q+r)(r+p)}{pqr} = 24\] \[\frac{(p-2q)(q-2r)(r-2p)}{pqr} = 10.\] Given that $\frac{p}{q} + \frac{q}{r} + \frac{r}{p}$ can be expressed in the form $\frac{m}{n}$, where $m,n$ are relatively prime positive integers, compute $m+n$.
[i]Author: Alex Zhu[/i]
1996 All-Russian Olympiad, 3
Find all natural numbers $n$, such that there exist relatively prime integers $x$ and $y$ and an integer $k > 1$ satisfying the equation $3^n =x^k + y^k$.
[i]A. Kovaldji, V. Senderov[/i]
1997 Estonia National Olympiad, 1
Prove that for every integer $n\ge 3$ there are such positives integers $x$ and $y$ such that $2^n = 7x^2 + y^2$
1984 IMO Longlists, 25
Prove that the product of five consecutive positive integers cannot be the square of an integer.
2003 South africa National Olympiad, 3
The first four digits of a certain positive integer $n$ are $1137$. Prove that the digits of $n$ can be shuffled in such a way that the new number is divisible by 7.
2021 Iran MO (2nd Round), 6
Is it possible to arrange 1400 positive integer ( not necessarily distinct ) ,at least one of them being 2021 , around a circle such that any number on this circle equals to the sum of gcd of the two previous numbers and two next numbers? for example , if $a,b,c,d,e$ are five consecutive numbers on this circle , $c=\gcd(a,b)+\gcd(d,e)$
2024 Saint Petersburg Mathematical Olympiad, 6
Polynomial $P(x)$ with integer coefficients is given. For some positive integer $n$ numbers $P(0),P(1),\dots,P(2^n+1)$ are all divisible by $2^{2^n}$. Prove that values of $P(x)$ in all integer points are divisible by $2^{2^n}$.
2010 Olympic Revenge, 1
Prove that the number of ordered triples $(x, y, z)$ such that $(x+y+z)^2 \equiv axyz \mod{p}$, where $gcd(a, p) = 1$ and $p$ is prime is $p^2 + 1$.
2022 Indonesia TST, N
Prove that there exists a set $X \subseteq \mathbb{N}$ which contains exactly 2022 elements such that for every distinct $a, b, c \in X$ the following equality:
\[ \gcd(a^n+b^n, c) = 1 \] is satisfied for every positive integer $n$.
2018 Cyprus IMO TST, Source
[url=https://artofproblemsolving.com/community/c677808][b]Cyprus IMO TST 2018[/b][/url]
[url=https://artofproblemsolving.com/community/c6h1666662p10591751][b]Problem 1.[/b][/url] Determine all integers $n \geq 2$ for which the number $11111$ in base $n$ is a perfect square.
[url=https://artofproblemsolving.com/community/c6h1666663p10591753][b]Problem 2.[/b][/url] Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$.
[url=https://artofproblemsolving.com/community/c6h1666660p10591747][b]Problem 3.[/b][/url] Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression
$$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$obtains its minimum value.
[url=https://artofproblemsolving.com/community/c6h1666661p10591749][b]Problem 4.[/b][/url] Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$.
(a) Prove that
$$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence:
$$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$
1995 Czech and Slovak Match, 6
Find all triples $(x; y; p)$ of two non-negative integers $x, y$ and a prime number p such that $ p^x-y^p=1 $
2018 IMO Shortlist, N6
Let $f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \}$ be a function such that $f(m + n) | f(m) + f(n) $ for all pairs $m,n$ of positive integers. Prove that there exists a positive integer $c > 1$ which divides all values of $f$.
2006 MOP Homework, 4
Let $n$ be a positive integer, and let $p$ be a prime number. Prove that if $p^p | n!$, then $p^{p+1} | n!$.
1935 Moscow Mathematical Olympiad, 021
Denote by $M(a, b, c, . . . , k)$ the least common multiple and by $D(a, b, c, . . . , k)$ the greatest common divisor of $a, b, c, . . . , k$. Prove that:
a) $M(a, b)D(a, b) = ab$,
b) $\frac{M(a, b, c)D(a, b)D(b, c)D(a, c)}{D(a, b, c)}= abc$.
2011 Switzerland - Final Round, 3
For positive integers $m$ and $n$, find the smalles possible value of $|2011^m-45^n|$.
[i](Swiss Mathematical Olympiad, Final round, problem 3)[/i]
2021 Miklós Schweitzer, 2
Prove that the equation
\[ 2^x + 5^y - 31^z = n! \]
has only a finite number of non-negative integer solutions $x,y,z,n$.
2021 Macedonian Balkan MO TST, Problem 2
Define a sequence: $x_0=1$ and for all $n\ge 0$, $x_{2n+1}=x_{n}$ and $x_{2n+2}=x_{n}+x_{n+1}$. Prove that for any relatively prime positive integers $a$ and $b$, there is a non-negative integer $n$ such that $a=x_n$ and $b=x_{n+1}$.