This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2015 NZMOC Camp Selection Problems, 6

In many computer languages, the division operation ignores remainders. Let’s denote this operation by $//$, so for instance $13//3 = 4$. If, for some $b$, $a//b = c$, then we say that $c$ is a [i]near factor[/i] of $a$. Thus, the near factors of $13$ are $1$, $2$, $3$, $4$, and $6$. Let $a$ be a positive integer. Prove that every positive integer less than or equal to $\sqrt{a}$ is a near factor of $a$.

2023 Hong Kong Team Selection Test, Problem 2

Find the period of the repetend of the fraction $\frac{39}{1428}$ by using [i]binary[/i] numbers, i.e. its binary decimal representation. (Note: When a proper fraction is expressed as a decimal number (of any base), either the decimal number terminates after finite steps, or it is of the form $0.b_1b_2\cdots b_sa_1a_2\cdots a_ka_1a_2\cdots a_ka_1a_2 \cdots a_k \cdots$. Here the repeated sequence $a_1a_2\cdots a_k$ is called the [i]repetend[/i] of the fraction, and the smallest length of the repetend, $k$, is called the [i]period[/i] of the decimal number.)

2021 Tuymaada Olympiad, 3

For $n$ distinct positive integers all their $n(n-1)/2$ pairwise sums are considered. For each of these sums Ivan has written on the board the number of original integers which are less than that sum and divide it. What is the maximum possible sum of the numbers written by Ivan?

II Soros Olympiad 1995 - 96 (Russia), 9.2

Will the number $1/1996$ decrease or increase and by how many times if in the decimal notation of this number the first non-zero digit after the decimal point is crossed out?

2012 South africa National Olympiad, 4

Let $p$ and $k$ be positive integers such that $p$ is prime and $k>1$. Prove that there is at most one pair $(x,y)$ of positive integers such that $x^k+px=y^k$.

2020 Chile National Olympiad, 1

Determine all positive integers $n$ such that the decimal representation of the number $6^n + 1$ has all its digits the same.

2023 Malaysian Squad Selection Test, 4

Find the largest constant $c>0$ such that for every positive integer $n\ge 2$, there always exist a positive divisor $d$ of $n$ such that $$d\le \sqrt{n}\hspace{0.5cm} \text{and} \hspace{0.5cm} \tau(d)\ge c\sqrt{\tau(n)}$$ where $\tau(n)$ is the number of divisors of $n$. [i]Proposed by Mohd. Suhaimi Ramly[/i]

Kvant 2022, M2696

Does there exist a sequence of natural numbers $a_1,a_2,\ldots$ such that the number $a_i+a_j$ has an even number of different prime divisors for any two different natural indices $i{}$ and $j{}$? [i]From the folklore[/i]

2014 ELMO Shortlist, 4

Let $\mathbb N$ denote the set of positive integers, and for a function $f$, let $f^k(n)$ denote the function $f$ applied $k$ times. Call a function $f : \mathbb N \to \mathbb N$ [i]saturated[/i] if \[ f^{f^{f(n)}(n)}(n) = n \] for every positive integer $n$. Find all positive integers $m$ for which the following holds: every saturated function $f$ satisfies $f^{2014}(m) = m$. [i]Proposed by Evan Chen[/i]

2020 Dutch Mathematical Olympiad, 4

Determine all pairs of integers $(x, y)$ such that $2xy$ is a perfect square and $x^2 + y^2$ is a prime number.

2018-IMOC, N4

Let a sequence $\{a_n\}$, $n \in \mathbb{N}^{*}$ given, satisfying the condition \[0 < a_{n+1} - a_n \leq 2001\] for all $n \in \mathbb{N}^{*}$ Show that there are infinitely many pairs of positive integers $(p, q)$ such that $p < q$ and $a_p$ is divisor of $a_q$.

2013 Balkan MO Shortlist, N9

Let $n\ge 2$ be a given integer. Determine all sequences $x_1,...,x_n$ of positive rational numbers such that $x_1^{x_2}=x_2^{x_3}=...=x_{n-1}^{x_n}=x_n^{x_1}$

MMATHS Mathathon Rounds, 2014

[u]Round 5 [/u] [b]p13.[/b] How many ways can we form a group with an odd number of members (plural) from $99$ people? Express your answer in the form $a^b + c$, where $a, b$, and $c$ are integers and $a$ is prime. [b]p14.[/b] A cube is inscibed in a right circular cone such that the ratio of the height of the cone to the radius is $2:1$. Compute the fraction of the cone’s volume that the cube occupies. [b]p15.[/b] Let $F_0 = 1$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$. Let $P(x) = \sum^{99}_{k=0} x^{F_k}$ . The remainder when $P(x)$ is divided by $x^3 - 1$ can be expressed as $ax^2 + bx + c$. Find $2a + b$. [u]Round 6 [/u] [b]p16.[/b] Ankit finds a quite peculiar deck of cards in that each card has n distinct symbols on it and any two cards chosen from the deck will have exactly one symbol in common. The cards are guaranteed to not have a certain symbol which is held in common with all the cards. Ankit decides to create a function f(n) which describes the maximum possible number of cards in a set given the previous constraints. What is the value of $f(10)$? [b]p17.[/b] If $|x| <\frac14$ and $$X = \sum^{\infty}_{N=0} \sum^{N}_{n=0} {N \choose n}x^{2n}(2x)^{N-n}.$$ then write $X$ in terms of $x$ without any summation or product symbols (and without an infinite number of ‘$+$’s, etc.). [b]p18.[/b] Dietrich is playing a game where he is given three numbers $a, b, c$ which range from $[0, 3]$ in a continuous uniform distribution. Dietrich wins the game if the maximum distance between any two numbers is no more than $1$. What is the probability Dietrich wins the game? [u]Round 7 [/u] [b]p19.[/b] Consider f defined by $$f(x) = x^6 + a_1x^5 + a_2x^4 + a_3x^3 + a_4x^2 + a_5x + a_6.$$ How many tuples of positive integers $(a_1, a_2, a_3, a_4, a_5, a_6)$ exist such that $f(-1) = 12$ and $f(1) = 30$? [b]p20.[/b] Let $a_n$ be the number of permutations of the numbers $S = \{1, 2, ... , n\}$ such that for all $k$ with $1 \le k \le n$, the sum of $k$ and the number in the $k$th position of the permutation is a power of $2$. Compute $a_1 + a_2 + a_4 + a_8 + ... + a_{1048576}$. [b]p21.[/b] A $4$-dimensional hypercube of edge length $1$ is constructed in $4$-space with its edges parallel to the coordinate axes and one vertex at the origin. Its coordinates are given by all possible permutations of $(0, 0, 0, 0)$,$(1, 0, 0, 0)$,$(1, 1, 0, 0)$,$(1, 1, 1, 0)$, and $(1, 1, 1, 1)$. The $3$-dimensional hyperplane given by $x+y+z+w = 2$ intersects the hypercube at $6$ of its vertices. Compute the 3-dimensional volume of the solid formed by the intersection. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2781335p24424563]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 NIMO Problems, 8

For a finite set $X$ define \[ S(X) = \sum_{x \in X} x \text{ and } P(x) = \prod_{x \in X} x. \] Let $A$ and $B$ be two finite sets of positive integers such that $\left\lvert A \right\rvert = \left\lvert B \right\rvert$, $P(A) = P(B)$ and $S(A) \neq S(B)$. Suppose for any $n \in A \cup B$ and prime $p$ dividing $n$, we have $p^{36} \mid n$ and $p^{37} \nmid n$. Prove that \[ \left\lvert S(A) - S(B) \right\rvert > 1.9 \cdot 10^{6}. \][i]Proposed by Evan Chen[/i]

1997 Croatia National Olympiad, Problem 1

Integers $x,y,z$ and $a,b,c$ satisfy $$x^2+y^2=a^2,\enspace y^2+z^2=b^2\enspace z^2+x^2=c^2.$$Prove that the product $xyz$ is divisible by (a) $5$, and (b) $55$.

2021 Honduras National Mathematical Olympiad, Problem 5

A positive integer $m$ is called [i]growing[/i] if its digits, read from left to right, are non-increasing. Prove that for each natural number $n$ there exists a growing number $m$ with $n$ digits such that the sum of its digits is a perfect square.

2018 Saudi Arabia GMO TST, 2

Let $p$ be a prime number of the form $9k + 1$. Show that there exists an integer n such that $p | n^3 - 3n + 1$.

2014 IMO Shortlist, N4

Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) [i]Proposed by Hong Kong[/i]

1995 All-Russian Olympiad Regional Round, 9.2

Is it possible to place $1995$ different natural numbers along a circle so that for any two of these numbers, the ratio of the greatest to the least is a prime? I feel that my solution's wording and notation is awkward (and perhaps unnecessarily complicated), so please feel free to critique it: [hide] Suppose that we do have such a configuration $a_{1},a_{2},...a_{1995}$. WLOG, $a_{2}=p_{1}a_{1}$. Then \[\frac{a_{2}}{a_{3}}= p_{2}, \frac{1}{p_{2}}\] \[\frac{a_{3}}{a_{4}}= p_{3}, \frac{1}{p_{3}}\] \[... \] \[\frac{a_{1995}}{a_{1}}= p_{1995}, \frac{1}{p_{1995}}\] Multiplying these all together, \[\frac{a_{2}}{a_{1}}= \frac{\prod p_{k}}{\prod p_{j}}= p_{1}\] Where $\prod p_{k}$ is some product of the elements in a subset of $\{ p_{2},p_{3}, ...p_{1995}\}$. We clear denominators to get \[p_{1}\prod p_{j}= \prod p_{k}\] Now, by unique prime factorization, the set $\{ p_{j}\}\cup \{ p_{1}\}$ is equal to the set $\{ p_{k}\}$. However, since there are a total of $1995$ primes, this is impossible. We conclude that no such configuration exists. [/hide]

1934 Eotvos Mathematical Competition, 1

Let $n$ be a given positive integer and $$A =\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n- 1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot 2n}$$ Prove that at least one term of the sequence $A, 2A,4A,8A,...,2^kA, ... $ is an integer.

2012 Indonesia TST, 4

Find all quadruplets of positive integers $(m,n,k,l)$ such that $3^m = 2^k + 7^n$ and $m^k = 1 + k + k^2 + k^3 + \ldots + k^l$.

1997 Romania Team Selection Test, 2

Suppose that $A$ be the set of all positive integer that can write in form $a^2+2b^2$ (where $a,b\in\mathbb {Z}$ and $b$ is not equal to $0$). Show that if $p$ be a prime number and $p^2\in A$ then $p\in A$. [i]Marcel Tena[/i]

2002 AIME Problems, 14

The perimeter of triangle $APM$ is $152,$ and the angle $PAM$ is a right angle. A circle of radius $19$ with center $O$ on $\overline{AP}$ is drawn so that it is tangent to $\overline{AM}$ and $\overline{PM}.$ Given that $OP=m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

India EGMO 2022 TST, 4

Let $N$ be a positive integer. Suppose given any real $x\in (0,1)$ with decimal representation $0.a_1a_2a_3a_4\cdots$, one can color the digits $a_1,a_2,\cdots$ with $N$ colors so that the following hold: 1. each color is used at least once; 2. for any color, if we delete all the digits in $x$ except those of this color, the resulting decimal number is rational. Find the least possible value of $N$. [i]~Sutanay Bhattacharya[/i]

2018 Cono Sur Olympiad, 6

A sequence $a_1, a_2,\dots, a_n$ of positive integers is [i]alagoana[/i], if for every $n$ positive integer, one have these two conditions I- $a_{n!} = a_1\cdot a_2\cdot a_3\cdots a_n$ II- The number $a_n$ is the $n$-power of a positive integer. Find all the sequence(s) [i]alagoana[/i].