Found problems: 15460
2007 Kurschak Competition, 2
Prove that if from any $2007$ consecutive terms of an infinite arithmetic progression of integers starting with $2$, one can choose a term relatively prime to all the $2006$ other terms, then there is also a term amongst any $2008$ consecutive terms relatively prime to the rest.
1996 Estonia National Olympiad, 1
Let $p$ be a fixed prime. Find all pairs $(x,y)$ of positive numbers satisfying $p(x-y) = xy$.
2008 Cuba MO, 3
A boy write three times the natural number $n$ in a blackboard. He then performed an operation of the following type several times:
He erased one of the numbers and wrote in its place the sum of the two others minus $1$. After several moves, one of the three numbers in the blackboard is $900$.
Find all the posible values of $n$.
1999 All-Russian Olympiad, 5
The sum of the (decimal) digits of a natural number $n$ equals $100$, and the sum of digits of $44n$ equals $800$. Determine the sum of digits of $3n$.
2015 Mathematical Talent Reward Programme, MCQ: P 5
How many integral solutions are there of the equation $x^5 -31x+2015=0$ ?
[list=1]
[*] 2
[*] 4
[*] 1
[*] None of these
[/list]
2004 Korea Junior Math Olympiad, 3
For an arbitrary prime number $p$, show that there exists infinitely many multiples of $p$ that can be expressed as the form $$\frac{x^2+y+1}{x+y^2+1}$$ Where $x, y$ are some positive integers.
2022 Switzerland Team Selection Test, 1
Let $n$ be a positive integer. Prove that there exists a finite sequence $S$ consisting of only zeros and ones, satisfying the following property: for any positive integer $d \geq 2$, when $S$ is interpreted in base $d$, the resulting number is non-zero and divisible by $n$.
[i]Remark: The sequence $S=s_ks_{k-1} \cdots s_1s_0$ interpreted in base $d$ is the number $\sum_{i=0}^{k}s_id^i$[/i]
Maryland University HSMC part II, 2019
[b]p1.[/b] Alex and Sam have a friend Pat, who is younger than they are. Alex, Sam and Pat all share a birthday. When Pat was born, Alex’s age times Sam’s age was $42$. Now Pat’s age is $33$ and Alex’s age is a prime number. How old is Sam now? Show your work and justify your answer. (All ages are whole numbers.)
[b]p2.[/b] Let $ABCD$ be a square with side length $2$. The four sides of $ABCD$ are diameters of four semicircles, each of which lies inside the square. The set of all points which lie on or inside two of these semicircles is a four petaled flower. Find (with proof) the area of this flower.
[img]https://cdn.artofproblemsolving.com/attachments/5/5/bc724b9f74c3470434c322020997a533986d33.png[/img]
[b]p3.[/b] A prime number is called [i]strongly prime[/i] if every integer obtained by permuting its digits is also prime. For example $113$ is strongly prime, since $113$, $131$, and $311$ are all prime numbers. Prove that there is no strongly prime number such that each of the digits $1, 3, 7$, and $9$ appears at least once in its decimal representation.
[b]p4.[/b] Suppose $n$ is a positive integer. Let an be the number of permutations of $1, 2, . . . , n$, where $i$ is not in the $i$-th position, for all $i$ with $1 \le i \le n$. For example $a_3 = 2$, where the two permutations that are counted are $231$, and $312$. Let bn be the number of permutations of $1, 2, . . . , n$, where no $i$ is followed by $i + 1$, for all $i$ with $1 \le i \le n - 1$. For example $b_3 = 3$, where the three permutations that are counted are $132$, $213$, and $321$. For every $n \ge 1$, find (with proof) a simple formula for $\frac{a_{n+1}}{b_n}$. Your formula should not involve summations. Use your formula to evaluate $\frac{a_{2020}}{b_{2019}}$.
[b]p5.[/b] Let $n \ge 2$ be an integer and $a_1, a_2, ... , a_n$ be positive real numbers such that $a_1 + a_2 +... + a_n = 1$. Prove that $$\sum^n_{k=1}\frac{a_k}{1 + a_{k+1} - a_{k-1}}\ge 1.$$
(Here $a_0 = a_n$ and $a_{n+1} = a_1$.)
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
DMM Team Rounds, 2003
[b]p1.[/b] In a $3$-person race, how many different results are possible if ties are allowed?
[b]p2.[/b] An isosceles trapezoid has lengths $5$, $5$, $5$, and $8$. What is the sum of the lengths of its diagonals?
[b]p3.[/b] Let $f(x) = (1 + x + x^2)(1 + x^3 + x^6)(1 + x^9 + x^{18})...$. Compute $f(4/5)$.
[b]p4.[/b] Compute the largest prime factor of $3^{12} - 1$.
[b]p5.[/b] Taren wants to throw a frisbee to David, who starts running perpendicular to the initial line between them at rate $1$ m/s. Taren throws the frisbee at rate $2$ m/s at the same instant David begins to run. At what angle should Taren throw the frisbee?
[b]p6.[/b] The polynomial $p(x)$ leaves remainder $6$ when divided by $x-5$, and $5$ when divided by $x-6$. What is the remainder when $p(x)$ is divided by $(x - 5)(x - 6)$?
[b]p7.[/b] Find the sum of the cubes of the roots of $x^{10} + x^9 + ... + x + 1 = 0$.
[b]p8.[/b] A circle of radius $1$ is inscribed in a the parabola $y = x^2$. What is the $x$-coordinate of the intersection in the first quadrant?
[b]p9.[/b] You are stuck in a cave with $3$ tunnels. The first tunnel leads you back to your starting point in $5$ hours, and the second tunnel leads you back there in $7$ hours. The third tunnel leads you out of the cave in $4$ hours. What is the expected number of hours for you to exit the cave, assuming you choose a tunnel randomly each time you come across your point of origin?
[b]p10.[/b] What is the minimum distance between the line $y = 4x/7 + 1/5$ and any lattice point in the plane? (lattice points are points with integer coordinates)
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 India PRMO, 1
Rama was asked by her teacher to subtract $3$ from a certain number and then divide the result by $9$. Instead, she subtracted $9$ and then divided the result by $3$. She got $43$ as the answer. What should have been her answer if she had solved the problem correctly?
ICMC 4, 2
Let $p > 3$ be a prime number. A sequence of $p-1$ integers $a_1,a_2, \dots, a_{p-1}$ is called [i]wonky[/i] if they are distinct modulo \(p\) and $a_ia_{i+2} \not\equiv a_{i+1}^2 \pmod p$ for all \(i \in \{1, 2, \dots, p-1\}\), where \(a_p = a_1\) and \(a_{p+1} = a_2\). Does there always exist a wonky sequence such that $$a_1a_2, \qquad a_1a_2+a_2a_3, \qquad \dots, \qquad a_1a_2+\cdots +a_{p-1}a_1,$$ are all distinct modulo $p$?
[i]Proposed by Harun Khan[/i]
2016 Iran MO (3rd Round), 2
Let $P$ be a polynomial with integer coefficients. We say $P$ is [i]good [/i] if there exist infinitely many prime numbers $q$ such that the set $$X=\left\{P(n) \mod q : \quad n\in \mathbb N\right\}$$ has at least $\frac{q+1}{2}$ members.
Prove that the polynomial $x^3+x$ is good.
2015 Dutch BxMO/EGMO TST, 1
Let $m$ and $n$ be positive integers such that $5m+ n$ is a divisor of $5n +m$.
Prove that $m$ is a divisor of $n$.
2012 ELMO Shortlist, 3
Let $s(k)$ be the number of ways to express $k$ as the sum of distinct $2012^{th}$ powers, where order does not matter. Show that for every real number $c$ there exists an integer $n$ such that $s(n)>cn$.
[i]Alex Zhu.[/i]
2010 Contests, 4
Let $r$ be a positive integer and let $N$ be the smallest positive integer such that the numbers $\frac{N}{n+r}\binom{2n}{n}$,
$n=0,1,2,\ldots $, are all integer. Show that $N=\frac{r}{2}\binom{2r}{r}$.
2006 Silk Road, 3
A subset $S$ of the set $M=\{1,2,.....,p-1\}$,where $p$ is a prime number of the kind
$12n+11$,is [i]essential[/i],if the product ${\Pi}_s$ of all elements of the subset
is not less than the product $\bar{{\Pi}_s}$ of all other elements of the set.The
[b]difference[/b] $\bigtriangleup_s=\Pi_s-\bar{{\Pi}_s}$ is called [i]the deviation[/i]
of the subset $S$.Define the least possible remainder of division by $p$ of the deviation of an essential subset,containing $\frac{p-1}{2}$ elements.
1949-56 Chisinau City MO, 8
Prove that the remainder of dividing the sum of two squares of integers by $4$ is different from $3$.
2007 Mexico National Olympiad, 1
Find all integers $N$ with the following property: for $10$ but not $11$ consecutive positive integers, each one is a divisor of $N$.
2021 Romania EGMO TST, P1
Let $x>1$ be a real number which is not an integer. For each $n\in\mathbb{N}$, let $a_n=\lfloor x^{n+1}\rfloor - x\lfloor x^n\rfloor$. Prove that the sequence $(a_n)$ is not periodic.
2024 Germany Team Selection Test, 2
Let $a_1<a_2<a_3<\dots$ be positive integers such that $a_{k+1}$ divides $2(a_1+a_2+\dots+a_k)$ for every $k\geqslant 1$. Suppose that for infinitely many primes $p$, there exists $k$ such that $p$ divides $a_k$. Prove that for every positive integer $n$, there exists $k$ such that $n$ divides $a_k$.
2002 Greece JBMO TST, 2
Let $A$ be a $3$-digit positive integer and $B$ be the positive integer that comes from $A$ be replacing with each other the digits of hundreds with the digit of the units. It is also given that $B$ is a $3$-digit number.
Find numbers $A$ and $B$ if it is known that $A$ divided by $B$ gives quotient $3$ and remainder equal to seven times the sum of it's digits.
EMCC Speed Rounds, 2016
[i]20 problems for 25 minutes.[/i]
[b]p1.[/b] Compute the value of $2 + 20 + 201 + 2016$.
[b]p2.[/b] Gleb is making a doll, whose prototype is a cube with side length $5$ centimeters. If the density of the toy is $4$ grams per cubic centimeter, compute its mass in grams.
[b]p3.[/b] Find the sum of $20\%$ of $16$ and $16\%$ of $20$.
[b]p4.[/b] How many times does Akmal need to roll a standard six-sided die in order to guarantee that two of the rolled values sum to an even number?
[b]p5.[/b] During a period of one month, there are ten days without rain and twenty days without snow. What is the positive difference between the number of rainy days and the number of snowy days?
[b]p6.[/b] Joanna has a fully charged phone. After using it for $30$ minutes, she notices that $20$ percent of the battery has been consumed. Assuming a constant battery consumption rate, for how many additional minutes can she use the phone until $20$ percent of the battery remains?
[b]p7.[/b] In a square $ABCD$, points $P$, $Q$, $R$, and $S$ are chosen on sides $AB$, $BC$, $CD$, and $DA$ respectively, such that $AP = 2PB$, $BQ = 2QC$, $CR = 2RD$, and $DS = 2SA$. What fraction of square $ABCD$ is contained within square $PQRS$?
[b]p8.[/b] The sum of the reciprocals of two not necessarily distinct positive integers is $1$. Compute the sum of these two positive integers.
[b]p9.[/b] In a room of government officials, two-thirds of the men are standing and $8$ women are standing. There are twice as many standing men as standing women and twice as many women in total as men in total. Find the total number of government ocials in the room.
[b]p10.[/b] A string of lowercase English letters is called pseudo-Japanese if it begins with a consonant and alternates between consonants and vowels. (Here the letter "y" is considered neither a consonant nor vowel.) How many $4$-letter pseudo-Japanese strings are there?
[b]p11.[/b] In a wooden box, there are $2$ identical black balls, $2$ identical grey balls, and $1$ white ball. Yuka randomly draws two balls in succession without replacement. What is the probability that the first ball is strictly darker than the second one?
[b]p12.[/b] Compute the real number $x$ for which $(x + 1)^2 + (x + 2)^2 + (x + 3)^2 = (x + 4)^2 + (x + 5)^2 + (x + 6)^2$.
[b]p13.[/b] Let $ABC$ be an isosceles right triangle with $\angle C = 90^o$ and $AB = 2$. Let $D$, $E$, and $F$ be points outside $ABC$ in the same plane such that the triangles $DBC$, $AEC$, and $ABF$ are isosceles right triangles with hypotenuses $BC$, $AC$, and $AB$, respectively. Find the area of triangle $DEF$.
[b]p14.[/b] Salma is thinking of a six-digit positive integer $n$ divisible by $90$. If the sum of the digits of n is divisible by $5$, find $n$.
[b]p15.[/b] Kiady ate a total of $100$ bananas over five days. On the ($i + 1$)-th day ($1 \le i \le 4$), he ate i more bananas than he did on the $i$-th day. How many bananas did he eat on the fifth day?
[b]p16.[/b] In a unit equilateral triangle $ABC$; points $D$,$E$, and $F$ are chosen on sides $BC$, $CA$, and $AB$, respectively. If lines $DE$, $EF$, and $FD$ are perpendicular to $CA$, $AB$ and $BC$, respectively, compute the area of triangle $DEF$.
[b]p17.[/b] Carlos rolls three standard six-sided dice. What is the probability that the product of the three numbers on the top faces has units digit 5?
[b]p18.[/b] Find the positive integer $n$ for which $n^{n^n}= 3^{3^{82}}$.
[b]p19.[/b] John folds a rope in half five times then cuts the folded rope with four knife cuts, leaving five stacks of rope segments. How many pieces of rope does he now have?
[b]p20.[/b] An integer $n > 1$ is conglomerate if all positive integers less than n and relatively prime to $n$ are not composite. For example, $3$ is conglomerate since $1$ and $2$ are not composite. Find the sum of all conglomerate integers less than or equal to $200$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 India Regional Mathematical Olympiad, 6
For any natural number, let $S(n)$ denote sum of digits of $n$. Find the number of $3$ digit numbers for which $S(S(n)) = 2$.
2016 Middle European Mathematical Olympiad, 7
A positive integer $n$ is [i]Mozart[/i] if the decimal representation of the sequence $1, 2, \ldots, n$ contains each digit an even number of times.
Prove that:
1. All Mozart numbers are even.
2. There are infinitely many Mozart numbers.
1983 Bundeswettbewerb Mathematik, 2
Two people $A$ and $B$ play the following game: They take from $\{0, 1, 2, 3,..., 1024\}$ alternately $512$, $256$, $128$, $64$, $32$, $16$, $8$, $4$, $2$, $1$, numbers away where $A$ first removes $512$ numbers, $B$ removes $256$ numbers etc. Two numbers $a, b$ remain ($a < b$). $B$ pays $A$ the amount $b - a$. $A$ would like to win as much as possible, $B$ would like to lose as little as possible. What profit does $A$ make if does every player play optimally according to their goals? The result must be justified.