This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2002 APMO, 2

Find all positive integers $a$ and $b$ such that \[ {a^2+b\over b^2-a}\quad\mbox{and}\quad{b^2+a\over a^2-b} \] are both integers.

2024 Caucasus Mathematical Olympiad, 3

Let $n$ be a $d$-digit (i.e., having $d$ digits in its decimal representation) positive integer not divisible by $10$. Writing all the digits of $n$ in reverse order, we obtain the number $n'$. Determine if it is possible that the decimal representation of the product $n\cdot n'$ consists of digits $8$ only, if (a) $d = 9998$; (b) $d = 9999?$

2019 Baltic Way, 20

Let us consider a polynomial $P(x)$ with integers coefficients satisfying $$P(-1)=-4,\ P(-3)=-40,\text{ and } P(-5)=-156.$$ What is the largest possible number of integers $x$ satisfying $$P(P(x))=x^2?$$

2013 VTRMC, Problem 4

A positive integer $n$ is called special if it can be represented in the form $n=\frac{x^2+y^2}{u^2+v^2}$, for some positive integers $x,y,u,v$. Prove that (a) $25$ is special; (b) $2014$ is not special; (c) $2015$ is not special.

2022 Paraguay Mathematical Olympiad, 3

From a list of integers from $1$ to $2022$, inclusive, delete all numbers in which at least one of its digits is a prime How many numbers remain without erasing?

Mid-Michigan MO, Grades 5-6, 2008

[b]p1.[/b] Insert "$+$" signs between some of the digits in the following sequence to obtain correct equality: $$1\,\,\,\, 2\,\,\,\, 3\,\,\,\, 4\,\,\,\,5\,\,\,\, 6\,\,\,\, 7 = 100$$ [b]p2.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the big square $ABCD$ is $40$ cm. [img]https://cdn.artofproblemsolving.com/attachments/8/c/d54925cba07f63ec8578048f46e1e730cb8df3.png[/img] [b]p3.[/b] Jack made $3$ quarts of fruit drink from orange and apple juice. $\frac25$ of his drink is orange juice and the rest is apple juice. Nick prefers more orange juice in the drink. How much orange juice should he add to the drink to obtain a drink composed of $\frac35$ of orange juice? [b]p4.[/b] A train moving at $55$ miles per hour meets and is passed by a train moving moving in the opposite direction at $35$ miles per hour. A passenger in the first train sees that the second train takes $8$ seconds to pass him. How long is the second train? [b]p5.[/b] It is easy to arrange $16$ checkers in $10$ rows of $4$ checkers each, but harder to arrange $9$ checkers in $10$ rows of $3$ checkers each. Do both. [b]p6.[/b] Every human that lived on Earth exchanged some number of handshakes with other humans. Show that the number of people that made an odd number of handshakes is even. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 NIMO Problems, 1

Let $\eta(m)$ be the product of all positive integers that divide $m$, including $1$ and $m$. If $\eta(\eta(\eta(10))) = 10^n$, compute $n$. [i]Proposed by Kevin Sun[/i]

2019 Latvia Baltic Way TST, 13

Let $s(k)$ denotes sum of digits of positive integer $k$. Prove that there are infinitely many positive integers $n$, which are not divisible by $10$ and satisfies: $$s(n^2) < s(n) - 5$$

2021 Flanders Math Olympiad, 1

Johnny once saw plums hanging, like eggs so big and numbered according to the first natural numbers. He is the first to pick the plum with number $2$. After that, Jantje picks the plum each time with the smallest number $n$ that satisfies the following two conditions: $\bullet$ $n$ is greater than all numbers on the already picked plums, $\bullet$ $n$ is not the product of two equal or different numbers on already picked plums. We call the numbers on the picked plums plum numbers. Is $100 000$ a plum number? Justify your answer.

LMT Team Rounds 2010-20, B25

Emmy goes to buy radishes at the market. Radishes are sold in bundles of $3$ for $\$5$and bundles of $5$ for $\$7$. What is the least number of dollars Emmy needs to buy exactly $100$ radishes?

2022 Junior Balkan Team Selection Tests - Moldova, 4

Rational number $\frac{m}{n}$ admits representation $$\frac{m}{n} = 1+ \frac12+\frac13 + ...+ \frac{1}{p-1}$$ where p $(p > 2)$ is a prime number. Show that the number $m$ is divisible by $p$.

2018 Vietnam National Olympiad, 6

The sequence $(x_n)$ is defined as follows: $$x_0=2,\, x_1=1,\, x_{n+2}=x_{n+1}+x_n$$ for every non-negative integer $n$. a. For each $n\geq 1$, prove that $x_n$ is a prime number only if $n$ is a prime number or $n$ has no odd prime divisors b. Find all non-negative pairs of integers $(m,n)$ such that $x_m|x_n$.

2021 China Team Selection Test, 4

Let $f(x),g(x)$ be two polynomials with integer coefficients. It is known that for infinitely many prime $p$, there exist integer $m_p$ such that $$f(a) \equiv g(a+m_p) \pmod p$$ holds for all $a \in \mathbb{Z}.$ Prove that there exists a rational number $r$ such that $$f(x)=g(x+r).$$

2021 Philippine MO, 5

A positive integer is called $\emph{lucky}$ if it is divisible by $7$, and the sum of its digits is also divisible by $7$. Fix a positive integer $n$. Show that there exists some lucky integer $l$ such that $\left|n - l\right| \leq 70$.

2007 Bulgarian Autumn Math Competition, Problem 9.4

Find the smallest natural number, which divides $2^{n}+15$ for some natural number $n$ and can be expressed in the form $3x^2-4xy+3y^2$ for some integers $x$ and $y$.

2019 MOAA, 10

Let $S$ be the set of all four digit palindromes (a palindrome is a number that reads the same forwards and backwards). The average value of $|m - n|$ over all ordered pairs $(m, n)$, where $m$ and $n$ are (not necessarily distinct) elements of $S$, is equal to $p/q$ , for relatively prime positive integers $p$ and $q$. Find $p + q$.

1998 Iran MO (3rd Round), 1

Determine all positive integers $n$ for which there exists an integer $m$ such that ${2^{n}-1}$ is a divisor of ${m^{2}+9}$.

1999 Bundeswettbewerb Mathematik, 4

A natural number is called [i]bright [/i] if it is the sum of a perfect square and a perfect cube. Prove that if $r$ and $s$ are any two positive integers, then (a) there exist infinitely many positive integers $n$ such that both $r+n$ and $s+n$ are [i]bright[/i], (b) there exist infinitely many positive integers $m$ such that both rm and sm are [i]bright[/i].

2000 AIME Problems, 1

The number \[ \frac 2{\log_4{2000^6}}+\frac 3{\log_5{2000^6}} \] can be written as $\frac mn$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2013 Iran Team Selection Test, 5

Do there exist natural numbers $a, b$ and $c$ such that $a^2+b^2+c^2$ is divisible by $2013(ab+bc+ca)$? [i]Proposed by Mahan Malihi[/i]

2020 Azerbaijan National Olympiad, 2

$a,b,c$ are positive integer. Solve the equation: $ 2^{a!}+2^{b!}=c^3 $

1999 China Team Selection Test, 2

Find all prime numbers $p$ which satisfy the following condition: For any prime $q < p$, if $p = kq + r, 0 \leq r < q$, there does not exist an integer $q > 1$ such that $a^{2} \mid r$.

1997 Tournament Of Towns, (562) 3

All expressions of the form $$\pm \sqrt1 \pm \sqrt2 \pm ... \pm \sqrt{100}$$ (with every possible combination of signs) are multiplied together. Prove that the result is: (a) an integer; (b) the square of an integer. (A Kanel)

2021 CHMMC Winter (2021-22), Individual

[b]p1.[/b] Fleming has a list of 8 mutually distinct integers between $90$ to $99$, inclusive. Suppose that the list has median $94$, and that it contains an even number of odd integers. If Fleming reads the numbers in the list from smallest to largest, then determine the sixth number he reads. [b]p2.[/b] Find the number of ordered pairs $(x,y)$ of three digit base-$10$ positive integers such that $x-y$ is a positive integer, and there are no borrows in the subtraction $x-y$. For example, the subtraction on the left has a borrow at the tens digit but not at the units digit, whereas the subtraction on the right has no borrows. $$\begin{tabular}{ccccc} & 4 & 7 & 2 \\ - & 1 & 9 & 1\\ \hline & 2 & 8 & 1 \\ \end{tabular}\,\,\, \,\,\, \begin{tabular}{ccccc} & 3 & 7 & 9 \\ - & 2 & 6 & 3\\ \hline & 1 & 1 & 6 \\ \end{tabular}$$ [b]p3.[/b] Evaluate $$1 \cdot 2 \cdot 3-2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5- 4 \cdot 5 \cdot 6+ ... +2017 \cdot 2018 \cdot 2019 -2018 \cdot 2019 \cdot 2020+1010 \cdot 2019 \cdot 2021$$ [b]p4.[/b] Find the number of ordered pairs of integers $(a,b)$ such that $$\frac{ab+a+b}{a^2+b^2+1}$$ is an integer. [b]p5.[/b] Lin Lin has a $4\times 4$ chessboard in which every square is initially empty. Every minute, she chooses a random square $C$ on the chessboard, and places a pawn in $C$ if it is empty. Then, regardless of whether $C$ was previously empty or not, she then immediately places pawns in all empty squares a king’s move away from $C$. The expected number of minutes before the entire chessboard is occupied with pawns equals $\frac{m}{n}$ for relatively prime positive integers $m$,$n$. Find $m+n$. A king’s move, in chess, is one square in any direction on the chessboard: horizontally, vertically, or diagonally. [b]p6.[/b] Let $P(x) = x^5-3x^4+2x^3-6x^2+7x+3$ and $a_1,...,a_5$ be the roots of$ P(x)$. Compute $$\sum^5_{k=1}(a^3_k -4a^2_k +a_k +6).$$ [b]p7.[/b] Rectangle $AXCY$ with a longer length of $11$ and square $ABCD$ share the same diagonal $\overline{AC}$. Assume $B$,$X$ lie on the same side of $\overline{AC}$ such that triangle$ BXC$ and square $ABCD$ are non-overlapping. The maximum area of $BXC$ across all such configurations equals $\frac{m}{n}$ for relatively prime positive integers $m$,$n$. Compute $m+n$. [b]p8.[/b] Earl the electron is currently at $(0,0)$ on the Cartesian plane and trying to reach his house at point $(4,4)$. Each second, he can do one of three actions: move one unit to the right, move one unit up, or teleport to the point that is the reflection of its current position across the line $y=x$. Earl cannot teleport in two consecutive seconds, and he stops taking actions once he reaches his house. Earl visits a chronologically ordered sequence of distinct points $(0,0)$, $...$, $(4,4)$ due to his choice of actions. This is called an [i]Earl-path[/i]. How many possible such [i]Earl-paths[/i] are there? [b]p9.[/b] Let $P(x)$ be a degree-$2022$ polynomial with leading coefficient $1$ and roots $\cos \left( \frac{2\pi k}{2023} \right)$ for $k = 1$ , $...$,$2022$ (note $P(x)$ may have repeated roots). If $P(1) =\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, then find the remainder when $m+n$ is divided by $100$. [b]p10.[/b] A randomly shuffled standard deck of cards has $52$ cards, $13$ of each of the four suits. There are $4$ Aces and $4$ Kings, one of each of the four suits. One repeatedly draws cards from the deck until one draws an Ace. Given that the first King appears before the first Ace, the expected number of cards one draws after the first King and before the first Ace is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [b]p11.[/b] The following picture shows a beam of light (dashed line) reflecting off a mirror (solid line). The [i]angle of incidence[/i] is marked by the shaded angle; the[i] angle of reflection[/i] is marked by the unshaded angle. [img]https://cdn.artofproblemsolving.com/attachments/9/d/d58086e5cdef12fbc27d0053532bea76cc50fd.png[/img] The sides of a unit square $ABCD$ are magically distorted mirrors such that whenever a light beam hits any of the mirrors, the measure of the angle of incidence between the light beam and the mirror is a positive real constant $q$ degrees greater than the measure of the angle of reflection between the light beam and the mirror. A light beam emanating from $A$ strikes $\overline{CD}$ at $W_1$ such that $2DW_1 =CW_1$, reflects off of $\overline{CD}$ and then strikes $\overline{BC}$ at $W_2$ such that $2CW_2 = BW_2$, reflects off of $\overline{BC}$, etc. To this end, denote $W_i$ the $i$-th point at which the light beam strikes $ABCD$. As $i$ grows large, the area of $W_iW_{i+1}W_{i+2}W_{i+3}$ approaches $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$. [b]p12.[/b] For any positive integer $m$, define $\phi (m)$ the number of positive integers $k \le m$ such that $k$ and $m$ are relatively prime. Find the smallest positive integer $N$ such that $\sqrt{ \phi (n) }\ge 22$ for any integer $n \ge N$. [b]p13.[/b] Let $n$ be a fixed positive integer, and let $\{a_k\}$ and $\{b_k\}$ be sequences defined recursively by $$a_1 = b_1 = n^{-1}$$ $$a_j = j(n- j+1)a_{j-1}\,\,\, , \,\,\, j > 1$$ $$b_j = nj^2b_{j-1}+a_j\,\,\, , \,\,\, j > 1$$ When $n = 2021$, then $a_{2021} +b_{2021} = m \cdot 2017^2$ for some positive integer $m$. Find the remainder when $m$ is divided by $2017$. [b]p14.[/b] Consider the quadratic polynomial $g(x) = x^2 +x+1020100$. A positive odd integer $n$ is called $g$-[i]friendly[/i] if and only if there exists an integer $m$ such that $n$ divides $2 \cdot g(m)+2021$. Find the number of $g$-[i]friendly[/i] positive odd integers less than $100$. [b]p15.[/b] Let $ABC$ be a triangle with $AB < AC$, inscribed in a circle with radius $1$ and center $O$. Let $H$ be the intersection of the altitudes of $ABC$. Let lines $\overline{OH}$, $\overline{BC}$ intersect at $T$. Suppose there is a circle passing through $B$, $H$, $O$, $C$. Given $\cos (\angle ABC-\angle BCA) = \frac{11}{32}$ , then $TO = \frac{m\sqrt{p}}{n}$ for relatively prime positive integers $m$,$n$ and squarefree positive integer $p$. Find $m+n+ p$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 IMO, 3

Let $ a$ and $ b$ be two positive integers such that $ a \cdot b \plus{} 1$ divides $ a^{2} \plus{} b^{2}$. Show that $ \frac {a^{2} \plus{} b^{2}}{a \cdot b \plus{} 1}$ is a perfect square.