Found problems: 15460
2017 BMT Spring, 10
Let $\phi (n)$ be the number of positive integers less than or equal to $n$ that are relatively prime to $n$. Evaluate
$$\sum \limits _{n=1} ^{64} (-1)^{n} \left \lfloor \frac{64}{n} \right \rfloor \phi (n).$$
2009 Singapore Senior Math Olympiad, 2
Find all positive integers $ m,n $ that satisfy the equation \[ 3.2^m +1 = n^2 \]
MBMT Guts Rounds, 2018
[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide]
[u]Set 4[/u]
[b]G.16[/b] A number $k$ is the product of exactly three distinct primes (in other words, it is of the form $pqr$, where $p, q, r$ are distinct primes). If the average of its factors is $66$, find $k$.
[b]G.17[/b] Find the number of lattice points contained on or within the graph of $\frac{x^2}{3} +\frac{y^2}{2}= 12$. Lattice points are coordinate points $(x, y)$ where $x$ and $y$ are integers.
[b]G.18 / C.23[/b] How many triangles can be made from the vertices and center of a regular hexagon? Two congruent triangles with different orientations are considered distinct.
[b]G.19[/b] Cindy has a cone with height $15$ inches and diameter $16$ inches. She paints one-inch thick bands of paint in circles around the cone, alternating between red and blue bands, until the whole cone is covered with paint. If she starts from the bottom of the cone with a blue strip, what is the ratio of the area of the cone covered by red paint to the area of the cone covered by blue paint?
[b]G.20 / C.25[/b] An even positive integer $n$ has an odd factorization if the largest odd divisor of $n$ is also the smallest odd divisor of n greater than 1. Compute the number of even integers $n$ less than $50$ with an odd factorization.
[u] Set 5[/u]
[b]G.21[/b] In the magical tree of numbers, $n$ is directly connected to $2n$ and $2n + 1$ for all nonnegative integers n. A frog on the magical tree of numbers can move from a number $n$ to a number connected to it in $1$ hop. What is the least number of hops that the frog can take to move from $1000$ to $2018$?
[b]G.22[/b] Stan makes a deal with Jeff. Stan is given 1 dollar, and every day for $10$ days he must either double his money or burn a perfect square amount of money. At first Stan thinks he has made an easy $1024$ dollars, but then he learns the catch - after $10$ days, the amount of money he has must be a multiple of $11$ or he loses all his money. What is the largest amount of money Stan can have after the $10$ days are up?
[b]G.23[/b] Let $\Gamma_1$ be a circle with diameter $2$ and center $O_1$ and let $\Gamma_2$ be a congruent circle centered at a point $O_2 \in \Gamma_1$. Suppose $\Gamma_1$ and $\Gamma_2$ intersect at $A$ and $B$. Let $\Omega$ be a circle centered at $A$ passing through $B$. Let $P$ be the intersection of $\Omega$ and $\Gamma_1$ other than $B$ and let $Q$ be the intersection of $\Omega$ and ray $\overrightarrow{AO_1}$. Define $R$ to be the intersection of $PQ$ with $\Gamma_1$. Compute the length of $O_2R$.
[b]G.24[/b] $8$ people are at a party. Each person gives one present to one other person such that everybody gets a present and no two people exchange presents with each other. How many ways is this possible?
[b]G.25[/b] Let $S$ be the set of points $(x, y)$ such that $y = x^3 - 5x$ and $x = y^3 - 5y$. There exist four points in $S$ that are the vertices of a rectangle. Find the area of this rectangle.
PS. You should use hide for answers. C1-15/ G1-10 have been posted [url=https://artofproblemsolving.com/community/c3h2790674p24540132]here [/url] and C16-30/G10-15, G25-30 [url=https://artofproblemsolving.com/community/c3h2790676p24540145]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url]
2020 Colombia National Olympiad, 3
A number is said to be [i]triangular [/i] if it can be expressed in the form $1 + 2 +...+n$ for some positive integer $n$. We call a positive integer $a$ [i]retriangular [/i] if there exists a fixed positive integer $ b$ such that $aT +b$ is a triangular number whenever $T$ is a triangular number. Determine all retriangular numbers.
1949-56 Chisinau City MO, 7
Prove that if the product $1\cdot 2\cdot ...\cdot n$ ($n> 3$) is not divisible by $n + 1$, then $n + 1$ is prime.
1992 Poland - First Round, 1
Solve the following equation in real numbers:
$\frac{(x^2-1)(|x|+1)}{x+sgnx}=[x+1].$
2020 Latvia Baltic Way TST, 13
It is given that $n$ and $\sqrt{12n^2+1}$ are both positive integers. Prove that:
$$ \sqrt{ \frac{\sqrt{12n^2+1}+1}{2}} $$
is also positive integer.
1993 Rioplatense Mathematical Olympiad, Level 3, 1
Find all functions $f$ defined on the integers greater than or equal to $1$ that satisfy:
(a) for all $n,f(n)$ is a positive integer.
(b) $f(n + m) =f(n)f(m)$ for all $m$ and $n$.
(c) There exists $n_0$ such that $f(f(n_0)) = [f(n_0)]^2$ .
2017 Harvard-MIT Mathematics Tournament, 27
Find the smallest possible value of $x + y$ where $x, y \ge 1$ and $x$ and $y$ are integers that satisfy $x^2 - 29y^2 = 1$.
2016 Azerbaijan Junior Mathematical Olympiad, 2
Prove that if for a real number $a $ , $a+\frac {1}{a} $is integer then $a^n+\frac {1}{a^n} $ is also integer where $n$ is positive integer.
2006 Mid-Michigan MO, 7-9
[b]p1.[/b] Find all solutions $a, b, c, d, e, f$ if it is known that they represent distinct digits and satisfy the following:
$\begin{tabular}{ccccc}
& a & b & c & a \\
+ & & d & d & e \\
& & & d & e \\
\hline
d & f & f & d & d \\
\end{tabular}$
[b]p2.[/b] Explain whether it possible that the sum of two squares of positive whole numbers has all digits equal to $1$:
$$n^2 + m^2 = 111...111$$
[b]p3. [/b]Two players play the following game on an $8 \times 8$ chessboard. The first player can put a rook on an arbitrary square. Then the second player can put another rook on a free square that is not controlled by the first rook. Then the first player can put a new rook on a free square that is not controlled by the rooks on the board. Then the second player can do the same, etc. A player who cannot put a new rook on the board loses the game. Who has a winning strategy?
[b]p4.[/b] Show that the difference $9^{2008} - 7^{2008}$ is divisible by $10$.
[b]p5.[/b] Is it possible to find distict positive whole numbers $a, b, c, d, e$ such that
$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}= 1?$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1994 All-Russian Olympiad Regional Round, 9.7
Find all prime numbers $p,q,r,s$ such that their sum is a prime number and $p^2+qs$ and $p^2 +qr$ are squares of integers.
2015 IFYM, Sozopol, 4
Let $k$ be a natural number. For each natural number $n$ we define $f_k (n)$ to be the least number, greater than $kn$, for which $nf_k (n)$ is a perfect square. Prove that $f_k (n)$ is injective.
2006 Czech-Polish-Slovak Match, 4
Show that for every integer $k \ge 1$ there is a positive integer $n$ such that the decimal representation of $2^n$ contains a block of exactly $k$ zeros, i.e. $2^n = \dots a00 \dots 0b \cdots$ with $k$ zeros and $a, b \ne 0$.
2007 Nicolae Păun, 4
Prove that for any natural number $ n, $ there exists a number having $ n+1 $ decimal digits, namely, $ k_0,k_1,k_2,\ldots ,k_n $, and a $ \text{(n+1)-tuple}, $ say $\left( \epsilon_0 ,\epsilon_1 ,\epsilon_2\ldots ,\epsilon_n \right)\in\{-1,1\}^{n+1} , $ that satisfies:
$$ 1\le \prod_{j=0}^n (2+j)^{k_j\cdot \epsilon_j}\le \sqrt[10^n-1]{2} $$
[i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]
2007 Junior Balkan Team Selection Tests - Romania, 4
We call a real number $x$ with $0 < x < 1$ [i]interesting[/i] if $x$ is irrational and if in its decimal writing the first four decimals are equal. Determine the least positive integer $n$ with the property that every real number $t$ with $0 < t < 1$ can be written as the sum of $n$ pairwise distinct interesting numbers.
1990 Flanders Math Olympiad, 2
Let $a$ and $b$ be two primes having at least two digits, such that $a > b$.
Show that \[240|\left(a^4-b^4\right)\] and show that 240 is the greatest positive integer having this property.
1963 Bulgaria National Olympiad, Problem 1
Find all three-digit numbers whose remainders after division by $11$ give quotient, equal to the sum of the squares of its digits.
2014 France Team Selection Test, 4
Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that
\[ m^2 + f(n) \mid mf(m) +n \]
for all positive integers $m$ and $n$.
VII Soros Olympiad 2000 - 01, 10.7
The President of the Bank "Glavny Central" Gerasim Shchenkov announced that from January $2$, $2001$ until January $31$ of the same year, the dollar exchange rate would not go beyond the boundaries of the corridor of $27$ rubles $50$ kopecks. and $28$ rubles $30$ kopecks for the dollar. On January $2$, the rate will be a multiple of $5$ kopecks, and starting from January 3, each day will differ from the rate of the previous day by exactly $5$ kopecks. Mr. Shchenkov suggested that citizens try to guess what the dollar exchange rate will be during the specified period. Anyone who can give an accurate forecast for at least one day, he promised to give a cash prize. One interesting person lives in our house, a tireless arguer. For his passion for arguments and constant winnings, he was even nicknamed Zhora Sporos. Zhora claims that he can give such a forecast of the dollar exchange rate for every day from January 424 to January 4314, which he will surely guess at least once, if, of course, the banker strictly acts in accordance with the announced rules. Is Zhora right?
Note: 1 ruble =100 kopecks
[hide=original wording]10-I-7. Президент банка "Главный централ" Герасим Щенков объявил, что со 2-го января 2001 года и до 31-го января этого же года курс доллара не будет выходить за границы коридора 27 руб. 50 коп. и 28 руб. 30 коп. за доллар. 2-го января курс будет кратен 5 копейкам, а, начиная с 3-го января, каждый день будет отличаться от курса предыдущего дня ровно на 5 копеек. Господин Щенков предложил гражданам попробовать угадать, каким будет курс доллара в течение указанного периода. Тому, кто сумеет дать точный прогноз хотя бы на один день, он обещал выдать денежный приз. В нашем доме живет один интересный человек, неутомимый спорщик. За страсть к спорам и постоянные выигрыши его даже прозвали Жора Спорос. Жора утверждает, что может дать такой прогноз курса доллара на каждый день со 2-го по 31-е января, что обязательно хотя бы один раз угадает, если, конечно, банкир будет строго действовать в соответствии с объявленными правилами. Прав ли Жора?
[/hide]
2011 AIME Problems, 9
Let $x_1,x_2,\dots ,x_6$ be nonnegative real numbers such that $x_1+x_2+x_3+x_4+x_5+x_6=1$, and $x_1x_3x_5+x_2x_4x_6 \geq \frac{1}{540}$. Let $p$ and $q$ be positive relatively prime integers such that $\frac{p}{q}$ is the maximum possible value of $x_1x_2x_3+x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_6 + x_5x_6x_1 + x_6x_1x_2$. Find $p+q$.
1993 IMO Shortlist, 4
Show that for any finite set $S$ of distinct positive integers, we can find a set $T \supseteq S$ such that every member of $T$ divides the sum of all the members of $T$.
[b]Original Statement:[/b]
A finite set of (distinct) positive integers is called a [b]DS-set[/b] if each of the integers divides the sum of them all. Prove that every finite set of positive integers is a subset of some [b]DS-set[/b].
2021 Harvard-MIT Mathematics Tournament., 8
For positive integers $a$ and $b$, let $M(a,b) = \tfrac{\text{lcm}(a,b)}{\gcd(a,b)},$ and for each positive integer $n \ge 2,$ define
\[x_n = M(1, M(2, M(3, \dots , M(n - 2, M(n - 1, n))\cdots))).\]
Compute the number of positive integers $n$ such that $2 \le n \le 2021$ and $5x_n^2 + 5x_{n+1}^2 = 26x_nx_{n+1}.$
2015 Baltic Way, 17
Find all positive integers $n$ for which $n^{n-1} - 1$ is divisible by $2^{2015}$, but not by $2^{2016}$.
2018 Azerbaijan IMO TST, 1
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]