This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2024 Turkey Team Selection Test, 4

Find all positive integer pairs $(a,b)$ such that, $$\frac{10^{a!} - 3^b +1}{2^a}$$ is a perfect square.

2023 Durer Math Competition Finals, 2

Timi was born in $1999$. Ever since her birth how many times has it happened that you could write that day’s date using only the digits $0$, $1$ and $2$? For example, $2022.02.21$. is such a date.

1992 French Mathematical Olympiad, Problem 5

Determine the number of digits $1$ in the integer part of $\frac{10^{1992}}{10^{83}+7}$.

2005 Baltic Way, 16

Let $n$ be a positive integer, let $p$ be prime and let $q$ be a divisor of $(n + 1)^p - n^p$. Show that $p$ divides $q - 1$.

2000 Belarus Team Selection Test, 5.2

Let $n,k$ be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists a positive integer $m$ which is divisible by $n$ and the sum of its digits in decimal representation is $k$.

2017 Dutch BxMO TST, 2

Let define a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that : $i)$$f(p)=1$ for all prime numbers $p$. $ii)$$f(xy)=xf(y)+yf(x)$ for all positive integers $x,y$ find the smallest $n \geq 2016$ such that $f(n)=n$

2021 Junior Macedonian Mathematical Olympiad, Problem 3

Find all positive integers $n$ and prime numbers $p$ such that $$17^n \cdot 2^{n^2} - p =(2^{n^2+3}+2^{n^2}-1) \cdot n^2.$$ [i]Authored by Nikola Velov[/i]

2024 Germany Team Selection Test, 3

A sequence of integers $a_0, a_1 …$ is called [i]kawaii[/i] if $a_0 =0, a_1=1,$ and $$(a_{n+2}-3a_{n+1}+2a_n)(a_{n+2}-4a_{n+1}+3a_n)=0$$ for all integers $n \geq 0$. An integer is called [i]kawaii[/i] if it belongs to some kawaii sequence. Suppose that two consecutive integers $m$ and $m+1$ are both kawaii (not necessarily belonging to the same kawaii sequence). Prove that $m$ is divisible by $3,$ and that $m/3$ is also kawaii.

2016 China Team Selection Test, 4

Set positive integer $m=2^k\cdot t$, where $k$ is a non-negative integer, $t$ is an odd number, and let $f(m)=t^{1-k}$. Prove that for any positive integer $n$ and for any positive odd number $a\le n$, $\prod_{m=1}^n f(m)$ is a multiple of $a$.

2002 All-Russian Olympiad Regional Round, 11.1

The real numbers $x$ and $y$ are such that for any distinct odd primes $p$ and $q$ the number $x^p + y^q$ is rational. Prove that $x$ and $y$ are rational numbers.

2004 Croatia National Olympiad, Problem 3

The sequence $(p_n)_{n\in\mathbb N}$ is defined by $p_1=2$ and, for $n\ge2$, $p_n$ is the largest prime factor of $p_1p_2\cdots p_{n-1}+1$. Show that $p_n\ne5$ for all $n$.

2006 Australia National Olympiad, 2

For any positive integer $n$, define $a_n$ to be the product of the digits of $n$. (a) Prove that $n \geq a(n)$ for all positive integers $n$. (b) Find all $n$ for which $n^2-17n+56 = a(n)$.

2011 Estonia Team Selection Test, 5

Prove that if $n$ and $k$ are positive integers such that $1<k<n-1$,Then the binomial coefficient $\binom nk$ is divisible by at least two different primes.

2005 India IMO Training Camp, 2

Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying \[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\] for any two positive integers $ m$ and $ n$. [i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers: $ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$. By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$). [i]Proposed by Mohsen Jamali, Iran[/i]

2022 Indonesia TST, N

Let $n$ be a natural number, with the prime factorisation \[ n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} \] where $p_1, \ldots, p_r$ are distinct primes, and $e_i$ is a natural number. Define \[ rad(n) = p_1p_2 \cdots p_r \] to be the product of all distinct prime factors of $n$. Determine all polynomials $P(x)$ with rational coefficients such that there exists infinitely many naturals $n$ satisfying $P(n) = rad(n)$.

2002 Federal Competition For Advanced Students, Part 1, 1

Determine all integers $a$ and $b$ such that \[(19a + b)^{18} + (a + b)^{18} + (a + 19b)^{18}\] is a perfect square.

2022 Thailand TST, 1

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

Russian TST 2020, P2

Given a natural number $n{}$ find the smallest $\lambda$ such that\[\gcd(x(x + 1)\cdots(x + n - 1), y(y + 1)\cdots(y + n - 1)) \leqslant (x-y)^\lambda,\] for any positive integers $y{}$ and $x \geqslant y + n$.

2010 Albania National Olympiad, 4

The sequence of Fibonnaci's numbers if defined from the two first digits $f_1=f_2=1$ and the formula $f_{n+2}=f_{n+1}+f_n$, $\forall n \in N$. [b](a)[/b] Prove that $f_{2010} $ is divisible by $10$. [b](b)[/b] Is $f_{1005}$ divisible by $4$? Albanian National Mathematical Olympiad 2010---12 GRADE Question 4.

KoMaL A Problems 2023/2024, A. 879

Fix an integer $k>2$. Two players, called Ana and Banana, play the following game of numbers. Initially, some integer $n \ge k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number $m$ just written on the blackboard and replaces it by some number $m'$ with $k \le m' < m$ that is coprime to $m$. The first player who cannot move anymore loses. An integer $n \ge k $ is called good if Banana has a winning strategy when the initial number is $n$, and bad otherwise. Consider two integers $n,n' \ge k$ with the property that each prime number $p \le k$ divides $n$ if and only if it divides $n'$. Prove that either both $n$ and $n'$ are good or both are bad.

2004 Regional Olympiad - Republic of Srpska, 3

Given a sequence $(a_n)$ of real numbers such that the set $\{a_n\}$ is finite. If for every $k>1$ subsequence $(a_{kn})$ is periodic, is it true that the sequence $(a_n)$ must be periodic?

2003 Denmark MO - Mohr Contest, 3

Determine the integers $n$ where $$|2n^2+9n+4|$$ is a prime number.

2002 Moldova Team Selection Test, 1

Consider the triangular numbers $T_n = \frac{n(n+1)}{2} , n \in \mathbb N$. [list][b](a)[/b] If $a_n$ is the last digit of $T_n$, show that the sequence $(a_n)$ is periodic and find its basic period. [b](b)[/b] If $s_n$ is the sum of the first $n$ terms of the sequence $(T_n)$, prove that for every $n \geq 3$ there is at least one perfect square between $s_{n-1} and $s_n$.[/list]

2018 Romania National Olympiad, 2

Let $a, b, c, d$ be natural numbers such that $a + b + c + d = 2018$. Find the minimum value of the expression: $$E = (a-b)^2 + 2(a-c)^2 + 3(a-d)^2+4(b-c)^2 + 5(b-d)^2 + 6(c-d)^2.$$

2019 India IMO Training Camp, P1

Let $a_1,a_2,\ldots, a_m$ be a set of $m$ distinct positive even numbers and $b_1,b_2,\ldots,b_n$ be a set of $n$ distinct positive odd numbers such that \[a_1+a_2+\cdots+a_m+b_1+b_2+\cdots+b_n=2019\] Prove that \[5m+12n\le 581.\]