This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

VMEO III 2006 Shortlist, N12

Given a positive integer $n > 1$. Find the smallest integer of the form $\frac{n^a-n^b}{n^c-n^d}$ for all positive integers $a,b,c,d$.

2016 Balkan MO Shortlist, N3

Find all the integer solutions $(x,y,z)$ of the equation $(x + y + z)^5 = 80xyz(x^2 + y^2 + z^2)$,

2020 Iran MO (3rd Round), 4

Prove that for every two positive integers $a,b$ greater than $1$. there exists infinitly many $n$ such that the equation $\phi(a^n-1)=b^m-b^t$ can't hold for any positive integers $m,t$.

2018 China Team Selection Test, 2

A number $n$ is [i]interesting[/i] if 2018 divides $d(n)$ (the number of positive divisors of $n$). Determine all positive integers $k$ such that there exists an infinite arithmetic progression with common difference $k$ whose terms are all interesting.

1981 Bundeswettbewerb Mathematik, 4

Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.

2014 Junior Balkan Team Selection Tests - Moldova, 2

Determine all pairs of integers $(x, y)$ that satisfy equation $(y - 2) x^2 + (y^2 - 6y + 8) x = y^2 - 5y + 62$.

1997 Slovenia National Olympiad, Problem 2

Let $a$ be an integer and $p$ a prime number that divides both $5a-1$ and $a-10$. Show that $p$ also divides $a-3$.

2022 Cyprus TST, 1

Find all pairs of integers $(m, n)$ which satisfy the equation \[(2n^2+5m-5n-mn)^2=m^3n\]

2020 Latvia TST, 1.3

Prove that equation $a^2 - b^2=ab - 1$ has infinitely many solutions, if $a,b$ are positive integers

2010 China Team Selection Test, 3

Fine all positive integers $m,n\geq 2$, such that (1) $m+1$ is a prime number of type $4k-1$; (2) there is a (positive) prime number $p$ and nonnegative integer $a$, such that \[\frac{m^{2^n-1}-1}{m-1}=m^n+p^a.\]

LMT Accuracy Rounds, 2023 S1

Andrew writes down all of the prime numbers less than $50$. How many times does he write the digit $2$?

1994 IMO Shortlist, 5

For any positive integer $ k$, let $ f_k$ be the number of elements in the set $ \{ k \plus{} 1, k \plus{} 2, \ldots, 2k\}$ whose base 2 representation contains exactly three 1s. (a) Prove that for any positive integer $ m$, there exists at least one positive integer $ k$ such that $ f(k) \equal{} m$. (b) Determine all positive integers $ m$ for which there exists [i]exactly one[/i] $ k$ with $ f(k) \equal{} m$.

JOM 2015 Shortlist, A4

Suppose $ 2015= a_1 <a_2 < a_3<\cdots <a_k $ be a finite sequence of positive integers, and for all $ m, n \in \mathbb{N} $ and $1\le m,n \le k $, $$ a_m+a_n\ge a_{m+n}+|m-n| $$ Determine the largest possible value $ k $ can obtain.

2018 Estonia Team Selection Test, 6

We call a positive integer $n$ whose all digits are distinct [i]bright[/i], if either $n$ is a one-digit number or there exists a divisor of $n$ which can be obtained by omitting one digit of $n$ and which is bright itself. Find the largest bright positive integer. (We assume that numbers do not start with zero.)

2023 CMIMC Algebra/NT, 2

Find the largest possible value of $a$ such that there exist real numbers $b,c>1$ such that \[a^{\log_b c}\cdot b^{\log_c a}=2023.\] [i]Proposed by Howard Halim[/i]

2010 Canadian Mathematical Olympiad Qualification Repechage, 4

Determine the smallest positive integer $m$ with the property that $m^3-3m^2+2m$ is divisible by both $79$ and $83$.

2000 China Team Selection Test, 3

For positive integer $a \geq 2$, denote $N_a$ as the number of positive integer $k$ with the following property: the sum of squares of digits of $k$ in base a representation equals $k$. Prove that: a.) $N_a$ is odd; b.) For every positive integer $M$, there exist a positive integer $a \geq 2$ such that $N_a \geq M$.

2010 IberoAmerican, 2

Determine if there are positive integers $a, b$ such that all terms of the sequence defined by \[ x_{1}= 2010,x_{2}= 2011\\ x_{n+2}= x_{n}+ x_{n+1}+a\sqrt{x_{n}x_{n+1}+b}\quad (n\ge 1) \] are integers.

2021 BMT, 7

For a given positive integer $n$, you may perform a series of steps. At each step, you may apply an operation: you may increase your number by one, or if your number is divisible by 2, you may divide your number by 2. Let $\ell(n)$ be the minimum number of operations needed to transform the number $n$ to 1 (for example, $\ell(1) = 0$ and $\ell(7) = 4$). How many positive integers $n$ are there such that $\ell(n) \leq 12$?

2010 Contests, 1

a) Show that it is possible to pair off the numbers $1,2,3,\ldots ,10$ so that the sums of each of the five pairs are five different prime numbers. b) Is it possible to pair off the numbers $1,2,3,\ldots ,20$ so that the sums of each of the ten pairs are ten different prime numbers?

Mid-Michigan MO, Grades 5-6, 2010

[b]p1.[/b] Ben and his dog are walking on a path around a lake. The path is a loop $500$ meters around. Suddenly the dog runs away with velocity $10$ km/hour. Ben runs after it with velocity $8$ km/hour. At the moment when the dog is $250$ meters ahead of him, Ben turns around and runs at the same speed in the opposite direction until he meets the dog. For how many minutes does Ben run? [b]p2.[/b] The six interior angles in two triangles are measured. One triangle is obtuse (i.e. has an angle larger than $90^o$) and the other is acute (all angles less than $90^o$). Four angles measure $120^o$, $80^o$, $55^o$ and $10^o$. What is the measure of the smallest angle of the acute triangle? [b]p3.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img] [b]p4.[/b] Two three-digit whole numbers are called relatives if they are not the same, but are written using the same triple of digits. For instance, $244$ and $424$ are relatives. What is the minimal number of relatives that a three-digit whole number can have if the sum of its digits is $10$? [b]p5.[/b] Three girls, Ann, Kelly, and Kathy came to a birthday party. One of the girls wore a red dress, another wore a blue dress, and the last wore a white dress. When asked the next day, one girl said that Kelly wore a red dress, another said that Ann did not wear a red dress, the last said that Kathy did not wear a blue dress. One of the girls was truthful, while the other two lied. Which statement was true? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 India IMO Training Camp, 2

Find all positive integers $x$ and $y$ such that $x^{x+y}=y^{3x}$.

2014 ELMO Shortlist, 9

Let $d$ be a positive integer and let $\varepsilon$ be any positive real. Prove that for all sufficiently large primes $p$ with $\gcd(p-1,d) \neq 1$, there exists an positive integer less than $p^r$ which is not a $d$th power modulo $p$, where $r$ is defined by \[ \log r = \varepsilon - \frac{1}{\gcd(d,p-1)}. \][i]Proposed by Shashwat Kishore[/i]

2017 JBMO Shortlist, NT3

Find all pairs of positive integers $(x,y)$ such that $2^x + 3^y$ is a perfect square.

1989 IMO Shortlist, 8

Let $ R$ be a rectangle that is the union of a finite number of rectangles $ R_i,$ $ 1 \leq i \leq n,$ satisfying the following conditions: [b](i)[/b] The sides of every rectangle $ R_i$ are parallel to the sides of $ R.$ [b](ii)[/b] The interiors of any two different rectangles $ R_i$ are disjoint. [b](iii)[/b] Each rectangle $ R_i$ has at least one side of integral length. Prove that $ R$ has at least one side of integral length. [i]Variant:[/i] Same problem but with rectangular parallelepipeds having at least one integral side.