This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2008 Princeton University Math Competition, A9

Find the number of positive integer solutions of $(x^2 + 2)(y^2 + 3)(z^2 + 4) = 60xyz$.

2022 USAJMO, 5

Find all pairs of primes $(p, q)$ for which $p-q$ and $pq-q$ are both perfect squares.

2017 China Team Selection Test, 4

An integer $n>1$ is given . Find the smallest positive number $m$ satisfying the following conditions: for any set $\{a,b\}$ $\subset \{1,2,\cdots,2n-1\}$ ,there are non-negative integers $ x, y$ ( not all zero) such that $2n|ax+by$ and $x+y\leq m.$

2013 NIMO Problems, 7

Dragon selects three positive real numbers with sum $100$, uniformly at random. He asks Cat to copy them down, but Cat gets lazy and rounds them all to the nearest tenth during transcription. If the probability the three new numbers still sum to $100$ is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, compute $100m+n$. [i]Proposed by Aaron Lin[/i]

2013 VJIMC, Problem 1

Let $S_n$ denote the sum of the first $n$ prime numbers. Prove that for any $n$ there exists the square of an integer between $S_n$ and $S_{n+1}$.

2016 Japan MO Preliminary, 9

How many pairs $(a, b)$ for integers $1 \le a, b \le 2015$ which satisfy that $a$ is divisible by $b + 1$ and $2016 - a$ is divisible by $b$.

2023 Bangladesh Mathematical Olympiad, P3

For any positive integer $n$, define $f(n)$ to be the smallest positive integer that does not divide $n$. For example, $f(1)=2$, $f(6)=4$. Prove that for any positive integer $n$, either $f(f(n))$ or $f(f(f(n)))$ must be equal to $2$.

1991 Tournament Of Towns, (293) 3

$100$ numbers $1$, $1/2$, $1/3$, $...$, $1/100$ are written on the blackboard. One may delete two arbitrary numbers $a$ and $b$ among them and replace them by the number $a + b + ab$. After $99$ such operations only one number is left. What is this final number? (D. Fomin, Leningrad)

2022 Germany Team Selection Test, 1

Let $a_1, a_2, \ldots, a_n$ be $n$ positive integers, and let $b_1, b_2, \ldots, b_m$ be $m$ positive integers such that $a_1 a_2 \cdots a_n = b_1 b_2 \cdots b_m$. Prove that a rectangular table with $n$ rows and $m$ columns can be filled with positive integer entries in such a way that * the product of the entries in the $i$-th row is $a_i$ (for each $i \in \left\{1,2,\ldots,n\right\}$); * the product of the entries in the $j$-th row is $b_j$ (for each $i \in \left\{1,2,\ldots,m\right\}$).

2024 Brazil Team Selection Test, 3

Let \( n \) be a positive integer. A function \( f : \{0, 1, \dots, n\} \to \{0, 1, \dots, n\} \) is called \( n \)-Bolivian if it satisfies the following conditions: • \( f(0) = 0 \); • \( f(t) \in \{ t-1, f(t-1), f(f(t-1)), \dots \} \) for all \( t = 1, 2, \dots, n \). For example, if \( n = 3 \), then the function defined by \( f(0) = f(1) = 0 \), \( f(2) = f(3) = 1 \) is 3-Bolivian, but the function defined by \( f(0) = f(1) = f(2) = 0 \), \( f(3) = 1 \) is not 3-Bolivian. For a fixed positive integer \( n \), Gollum selects an \( n \)-Bolivian function. Smeagol, knowing that \( f \) is \( n \)-Bolivian, tries to figure out which function was chosen by asking questions of the type: \[ \text{How many integers } a \text{ are there such that } f(a) = b? \] given a \( b \) of his choice. Show that if Gollum always answers correctly, Smeagol can determine \( f \) and find the minimum number of questions he needs to ask, considering all possible choices of \( f \).

2008 Philippine MO, 2

Find the largest integer $n$ for which $\frac{n^{2007}+n^{2006}+\cdots+n^2+n+1}{n+2007}$ is an integer.

1992 Bulgaria National Olympiad, Problem 2

Prove that there exists $1904$-element subset of the set $\{1,2,\ldots,1992\}$, which doesn’t contain an arithmetic progression consisting of $41$ terms. [i](Ivan Tonov)[/i]

2021 Brazil EGMO TST, 8

Let $n$ be a positive integer, such that $125n+22$ is a power of $3$. Prove that $125n+29$ has a prime factor greater than $100$.

1988 Mexico National Olympiad, 2

If $a$ and $b$ are positive integers, prove that $11a+2b$ is a multiple of $19$ if and only if so is $18a+5b$ .

1986 Brazil National Olympiad, 2

Find the number of ways that a positive integer $n$ can be represented as a sum of one or more consecutive positive integers.

2014 AIME Problems, 14

In $\triangle ABC$, $AB=10$, $\angle A=30^\circ$, and $\angle C=45^\circ$. Let $H,D$, and $M$ be points on line $\overline{BC}$ such that $\overline{AH}\perp\overline{BC}$, $\angle BAD=\angle CAD$, and $BM=CM$. Point $N$ is the midpoint of segment $\overline{HM}$, and point $P$ is on ray $AD$ such that $\overline{PN}\perp\overline{BC}$. Then $AP^2=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2010 CHMMC Winter, 4

Compute the number of integer solutions $(x, y)$ to $xy - 18x - 35y = 1890$.

2020 Brazil EGMO TST, 4

Determine all positive integers $n$ such that $\frac{n(n-1)}{2}-1$ divides $1^7+2^7+\dots +n^7$.

1996 All-Russian Olympiad, 5

Show that in the arithmetic progression with first term 1 and ratio 729, there are infinitely many powers of 10. [i]L. Kuptsov[/i]

2024 Belarusian National Olympiad, 10.1

Let $1=d_1<d_2<\ldots<d_k=n$ be all divisors of $n$. It turned out that numbers $d_2-d_1,\ldots,d_k-d_{k-1}$ are $1,3,\ldots,2k-3$ in some order. Find all possible values of $n$ [i]M. Zorka[/i]

2024 Korea - Final Round, P1

Let $a, b, c, d$ be odd positive integers and pairwise coprime. For a positive integer $n$, let $$f(n) = \left[\frac{n}{a} \right]+\left[\frac{n}{b}\right]+\left[\frac{n}{c}\right]+\left[\frac{n}{d}\right]$$ Prove that $$\sum_{n=1}^{abcd}(-1)^{f(n)}=1$$

1990 Kurschak Competition, 1

Let $p>2$ be a prime number and $n$ a positive integer. Prove that $pn^2$ has at most one positive divisor $d$ for which $n^2+d$ is a square number.

2011 Romania National Olympiad, 2

Prove that any natural number smaller or equal than the factorial of a natural number $ n $ is the sum of at most $ n $ distinct divisors of the factorial of $ n. $

2015 India IMO Training Camp, 1

Find all positive integers $a,b$ such that $\frac{a^2+b}{b^2-a}$ and $\frac{b^2+a}{a^2-b}$ are also integers.

2020 Junior Balkan Team Selection Tests - Moldova, 4

A natural number $n$ is called "$k$-squared" if it can be written as a sum of $k$ perfect squares not equal to 0. a) Prove that 2020 is "$2$-squared" , "$3$-squared" and "$4$-squared". b) Determine all natural numbers not equal to 0 ($a, b, c, d ,e$) $a<b<c<d<e$ that verify the following conditions simultaneously : 1) $e-2$ , $e$ , $e+4$ are all prime numbers. 2) $a^2+ b^2 + c^2 + d^2 + e^2$ = 2020.