Found problems: 15460
2016 Azerbaijan IMO TST First Round, 1
Find the maximum value of natural components of number $96$ that we can seperate such that all of them must be relatively prime number withh each other.
2016 Ecuador Juniors, 6
Determine the number of positive integers $N = \overline{abcd}$, with $a, b, c, d$ nonzero digits, which satisfy $(2a -1) (2b -1) (2c- 1) (2d - 1) = 2abcd -1$.
2003 Vietnam National Olympiad, 1
Find the largest positive integer $n$ such that the following equations have integer solutions in $x, y_{1}, y_{2}, ... , y_{n}$ :
$(x+1)^{2}+y_{1}^{2}= (x+2)^{2}+y_{2}^{2}= ... = (x+n)^{2}+y_{n}^{2}.$
2022 Azerbaijan EGMO/CMO TST, N4
Let $n\geq 1$ be a positive integer. We say that an integer $k$ is a [i]fan [/i]of $n$ if $0\leq k\leq n-1$ and there exist integers $x,y,z\in\mathbb{Z}$ such that
\begin{align*}
x^2+y^2+z^2 &\equiv 0 \pmod n;\\
xyz &\equiv k \pmod n.
\end{align*}
Let $f(n)$ be the number of fans of $n$. Determine $f(2020)$.
2006 Korea Junior Math Olympiad, 2
Find all positive integers that can be written in the following way $\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}$ .
Also, $a,b, c$ are positive integers that are pairwise relatively prime.
2020 Peru Iberoamerican Team Selection Test, P6
Find all functions $f : \mathbb{Z}\to \mathbb{Z}$ that satisfy:
$i) f(f(x))=x, \forall x\in\mathbb{Z}$
$ii)$ For any integer $x$ and $y$ such that $x + y$ is odd, it holds that $f(x) + f(y) \ge x + y.$
2009 Estonia Team Selection Test, 6
For any positive integer $n$, let $c(n)$ be the largest divisor of $n$ not greater than $\sqrt{n}$ and let $s(n)$ be the least integer $x$ such that $n < x$ and the product $nx$ is divisible by an integer $y$ where $n < y < x$. Prove that, for every $n$, $s(n) = (c(n) + 1) \cdot \left( \frac{n}{c(n)}+1\right)$
2016 IMO Shortlist, N2
Let $\tau(n)$ be the number of positive divisors of $n$. Let $\tau_1(n)$ be the number of positive divisors of $n$ which have remainders $1$ when divided by $3$. Find all positive integral values of the fraction $\frac{\tau(10n)}{\tau_1(10n)}$.
1917 Eotvos Mathematical Competition, 2
In the square of an integer $ a$, the tens’ digit is $7$. What is the units’ digit of $a^2$?
2010 China National Olympiad, 2
Let $k$ be an integer $\geq 3$. Sequence $\{a_n\}$ satisfies that $a_k = 2k$ and for all $n > k$, we have
\[a_n =
\begin{cases}
a_{n-1}+1 & \text{if } (a_{n-1},n) = 1 \\
2n & \text{if } (a_{n-1},n) > 1
\end{cases}
\]
Prove that there are infinitely many primes in the sequence $\{a_n - a_{n-1}\}$.
2006 MOP Homework, 1
Let $S$ be a set of rational numbers with the following properties:
(a) $\frac12$ is an element in $S$,
(b) if $x$ is in $S$, then both $\frac{1}{x+1}$ and $\frac{x}{x+1}$ are in $S$.
Prove that $S$ contains all rational numbers in the interval $(0, 1)$.
2019 USA IMO Team Selection Test, 4
We say that a function $f: \mathbb{Z}_{\ge 0} \times \mathbb{Z}_{\ge 0} \to \mathbb{Z}$ is [i]great[/i] if for any nonnegative integers $m$ and $n$,
\[f(m + 1, n + 1) f(m, n) - f(m + 1, n) f(m, n + 1) = 1.\]
If $A = (a_0, a_1, \dots)$ and $B = (b_0, b_1, \dots)$ are two sequences of integers, we write $A \sim B$ if there exists a great function $f$ satisfying $f(n, 0) = a_n$ and $f(0, n) = b_n$ for every nonnegative integer $n$ (in particular, $a_0 = b_0$).
Prove that if $A$, $B$, $C$, and $D$ are four sequences of integers satisfying $A \sim B$, $B \sim C$, and $C \sim D$, then $D \sim A$.
[i]Ankan Bhattacharya[/i]
2024 Brazil National Olympiad, 1
Consider a sequence whose first term is a given positive integer \( N > 1 \). Consider the prime factorization of \( N \). If \( N \) is a power of 2, the sequence consists of a single term: \( N \). Otherwise, the second term of the sequence is obtained by replacing the largest prime factor \( p \) of \( N \) with \( p + 1 \) in the prime factorization. If the new number is not a power of 2, we repeat the same procedure with it, remembering to factor it again into primes. If it is a power of 2, the numerical sequence ends. And so on.
For example, if the first term of the sequence is \( N = 300 = 2^2 \cdot 3 \cdot 5^2 \), since its largest prime factor is \( p = 5 \), the second term is \( 2^2 \cdot 3 \cdot (5 + 1)^2 = 2^4 \cdot 3^3 \). Repeating the procedure, the largest prime factor of the second term is \( p = 3 \), so the third term is \( 2^4 \cdot (3 + 1)^3 = 2^{10} \). Since we obtained a power of 2, the sequence has 3 terms: \( 2^2 \cdot 3 \cdot 5^2 \), \( 2^4 \cdot 3^3 \), and \( 2^{10} \).
a) How many terms does the sequence have if the first term is \( N = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \)?
b) Show that if a prime factor \( p \) leaves a remainder of 1 when divided by 3, then \( \frac{p+1}{2} \) is an integer that also leaves a remainder of 1 when divided by 3.
c) Present an initial term \( N \) less than 1,000,000 (one million) such that the sequence starting from \( N \) has exactly 11 terms.
1992 Hungary-Israel Binational, 3
We examine the following two sequences: The Fibonacci sequence: $F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }$ for $n \geq 2$; The Lucas sequence: $L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$ \[F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},\] where $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
We call a nonnegative integer $r$-Fibonacci number if it is a sum of $r$ (not necessarily distinct) Fibonacci numbers. Show that there infinitely many positive integers that are not $r$-Fibonacci numbers for any $r, 1 \leq r\leq 5.$
2018 China Western Mathematical Olympiad, 7
Let $p$ and $c$ be an prime and a composite, respectively. Prove that there exist two integers $m,n,$ such that
$$0<m-n<\frac{\textup{lcm}(n+1,n+2,\cdots,m)}{\textup{lcm}(n,n+1,\cdots,m-1)}=p^c.$$
2021 South Africa National Olympiad, 1
Find the smallest and largest integers with decimal representation of the form $ababa$ ($a \neq 0$) that are divisible by $11$.
2024 Korea Winter Program Practice Test, Q2
Let $d(n)$ be the number of divisors of $n$. Show that there exists positive integers $m$ and $n$ such that there are exactly 2024 triples of integers $(i, j, k)$ satisfying the following condition:
[center]$0<i<j<k \le m$ and $d(n+i)d(n+j)d(n+k)$ is a multiple of $ijk$[/center]
2011 Tournament of Towns, 1
An integer $N > 1$ is written on the board. Alex writes a sequence of positive integers, obtaining new integers in the following manner: he takes any divisor greater than $1$ of the last number and either adds it to, or subtracts it from the number itself. Is it always (for all $N > 1$) possible for Alex to write the number $2011$ at some point?
2001 China Team Selection Test, 2
Find the largest positive real number \( c \) such that for any positive integer \( n \), satisfies \(\{ \sqrt{7n} \} \geq \frac{c}{\sqrt{7n}}\).
2000 France Team Selection Test, 3
Find all nonnegative integers $x,y,z$ such that $(x+1)^{y+1} + 1= (x+2)^{z+1}$.
1996 Tournament Of Towns, (484) 2
Does there exist an integer n such that all three numbers
(a) $n - 96$, $n$ and $n + 96$
(b) $n - 1996$, $n$ and $n + 1996$
are positive prime numbers?
(V Senderov)
JOM 2015 Shortlist, N2
Let $ \mathbb{A} \subset \mathbb{N} $ such that all elements in $ \mathbb{A} $ can be representable in the form of $ x^2+2y^2 $ , $ x,y \in \mathbb{N} $, and $ x>y $. Let $ \mathbb{B} \subset \mathbb{N} $ such that all elements in $ \mathbb{B} $ can be representable in the form of $\displaystyle \frac{a^3+b^3+c^3}{a+b+c} $ , $ a,b,c \in \mathbb{N} $, and $ a,b,c $ are distinct.
a) Prove that $ \mathbb{A} \subset \mathbb{B} $.
b) Prove that there exist infinitely many positive integers $n$ satisfy $ n \in \mathbb{B}$ and $ n \not \in \mathbb{A} $
1974 Bulgaria National Olympiad, Problem 2
Let $f(x)$ and $g(x)$ be non-constant polynomials with integer positive coefficients, $m$ and $n$ are given natural numbers. Prove that there exists infinitely many natural numbers $k$ for which the numbers
$$f(m^n)+g(0),f(m^n)+g(1),\ldots,f(m^n)+g(k)$$
are composite.
[i]I. Tonov[/i]
2006 Indonesia MO, 2
Let $ a,b,c$ be positive integers. If $ 30|a\plus{}b\plus{}c$, prove that $ 30|a^5\plus{}b^5\plus{}c^5$.
MOAA Individual Speed General Rounds, 2018 Ind
[b]p1.[/b] Find $20 \cdot 18 + 20 + 18 + 1$.
[b]p2.[/b] Suzie’s Ice Cream has $10$ flavors of ice cream, $5$ types of cones, and $5$ toppings to choose from. An ice cream cone consists of one flavor, one cone, and one topping. How many ways are there for Sebastian to order an ice cream cone from Suzie’s?
[b]p3.[/b] Let $a = 7$ and $b = 77$. Find $\frac{(2ab)^2}{(a+b)^2-(a-b)^2}$ .
[b]p4.[/b] Sebastian invests $100,000$ dollars. On the first day, the value of his investment falls by $20$ percent. On the second day, it increases by $25$ percent. On the third day, it falls by $25$ percent. On the fourth day, it increases by $60$ percent. How many dollars is his investment worth by the end of the fourth day?
[b]p5.[/b] Square $ABCD$ has side length $5$. Points $K,L,M,N$ are on segments $AB$,$BC$,$CD$,$DA$ respectively,such that $MC = CL = 2$ and $NA = AK = 1$. The area of trapezoid $KLMN$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
[b]p6.[/b] Suppose that $p$ and $q$ are prime numbers. If $p + q = 30$, find the sum of all possible values of $pq$.
[b]p7.[/b] Tori receives a $15 - 20 - 25$ right triangle. She cuts the triangle into two pieces along the altitude to the side of length $25$. What is the difference between the areas of the two pieces?
[b]p8.[/b] The factorial of a positive integer $n$, denoted $n!$, is the product of all the positive integers less than or equal to $n$. For example, $1! = 1$ and $5! = 120$. Let $m!$ and $n!$ be the smallest and largest factorial ending in exactly $3$ zeroes, respectively. Find $m + n$.
[b]p9.[/b] Sam is late to class, which is located at point $B$. He begins his walk at point $A$ and is only allowed to walk on the grid lines. He wants to get to his destination quickly; how many paths are there that minimize his walking distance?
[img]https://cdn.artofproblemsolving.com/attachments/a/5/764e64ac315c950367357a1a8658b08abd635b.png[/img]
[b]p10.[/b] Mr. Iyer owns a set of $6$ antique marbles, where $1$ is red, $2$ are yellow, and $3$ are blue. Unfortunately, he has randomly lost two of the marbles. His granddaughter starts drawing the remaining $4$ out of a bag without replacement. She draws a yellow marble, then the red marble. Suppose that the probability that the next marble she draws is blue is equal to $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positiveintegers. What is $m + n$?
[b]p11.[/b] If $a$ is a positive integer, what is the largest integer that will always be a factor of $(a^3+1)(a^3+2)(a^3+3)$?
[b]p12.[/b] What is the largest prime number that is a factor of $160,401$?
[b]p13.[/b] For how many integers $m$ does the equation $x^2 + mx + 2018 = 0$ have no real solutions in $x$?
[b]p14.[/b] What is the largest palindrome that can be expressed as the product of two two-digit numbers? A palindrome is a positive integer that has the same value when its digits are reversed. An example of a palindrome is $7887887$.
[b]p15.[/b] In circle $\omega$ inscribe quadrilateral $ADBC$ such that $AB \perp CD$. Let $E$ be the intersection of diagonals $AB$ and $CD$, and suppose that $EC = 3$, $ED = 4$, and $EB = 2$. If the radius of $\omega$ is $r$, then $r^2 =\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Determine $m + n$.
[b]p16.[/b] Suppose that $a, b, c$ are nonzero real numbers such that $2a^2 + 5b^2 + 45c^2 = 4ab + 6bc + 12ca$. Find the value of $\frac{9(a + b + c)^3}{5abc}$ .
[b]p17.[/b] Call a positive integer n spicy if there exist n distinct integers $k_1, k_2, ... , k_n$ such that the following two conditions hold:
$\bullet$ $|k_1| + |k_2| +... + |k_n| = n2$,
$\bullet$ $k_1 + k_2 + ...+ k_n = 0$.
Determine the number of spicy integers less than $10^6$.
[b]p18.[/b] Consider the system of equations $$|x^2 - y^2 - 4x + 4y| = 4$$
$$|x^2 + y^2 - 4x - 4y| = 4.$$ Find the sum of all $x$ and $y$ that satisfy the system.
[b]p19.[/b] Determine the number of $8$ letter sequences, consisting only of the letters $W,Q,N$, in which none of the sequences $WW$, $QQQ$, or $NNNN$ appear. For example, $WQQNNNQQ$ is a valid sequence, while $WWWQNQNQ$ is not.
[b]p20.[/b] Triangle $\vartriangle ABC$ has $AB = 7$, $CA = 8$, and $BC = 9$. Let the reflections of $A,B,C$ over the orthocenter H be $A'$,$B'$,$C'$. The area of the intersection of triangles $ABC$ and $A'B'C'$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ , where $b$ is squarefree and $a$ and $c$ are relatively prime. determine $a+b+c$. (The orthocenter of a triangle is the intersection of its three altitudes.)
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].