This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2023 Junior Balkan Team Selection Tests - Romania, P4

Let $M \geq 1$ be a real number. Determine all natural numbers $n$ for which there exist distinct natural numbers $a$, $b$, $c > M$, such that $n = (a,b) \cdot (b,c) + (b,c) \cdot (c,a) + (c,a) \cdot (a,b)$ (where $(x,y)$ denotes the greatest common divisor of natural numbers $x$ and $y$).

1993 Irish Math Olympiad, 2

A positive integer $ n$ is called $ good$ if it can be uniquely written simultaneously as $ a_1\plus{}a_2\plus{}...\plus{}a_k$ and as $ a_1 a_2...a_k$, where $ a_i$ are positive integers and $ k \ge 2$. (For example, $ 10$ is good because $ 10\equal{}5\plus{}2\plus{}1\plus{}1\plus{}1\equal{}5 \cdot 2 \cdot 1 \cdot 1 \cdot 1$ is a unique expression of this form). Find, in terms of prime numbers, all good natural numbers.

2020 Brazil Cono Sur TST, 2

A number n is called charming when $ 4k^2 + n $ is a prime number for every $ 0 \leq k <n $ integer, find all charming numbers.

2015 JBMO Shortlist, NT5

Check if there exists positive integers $ a, b$ and prime number $p$ such that $a^3-b^3=4p^2$

2005 Bosnia and Herzegovina Team Selection Test, 3

Let $n$ be a positive integer such that $n \geq 2$. Let $x_1, x_2,..., x_n$ be $n$ distinct positive integers and $S_i$ sum of all numbers between them except $x_i$ for $i=1,2,...,n$. Let $f(x_1,x_2,...,x_n)=\frac{GCD(x_1,S_1)+GCD(x_2,S_2)+...+GCD(x_n,S_n)}{x_1+x_2+...+x_n}.$ Determine maximal value of $f(x_1,x_2,...,x_n)$, while $(x_1,x_2,...,x_n)$ is an element of set which consists from all $n$-tuples of distinct positive integers.

2012 Rioplatense Mathematical Olympiad, Level 3, 1

An integer $n$ is called [i]apocalyptic[/i] if the addition of $6$ different positive divisors of $n$ gives $3528$. For example, $2012$ is apocalyptic, because it has six divisors, $1$, $2$, $4$, $503$, $1006$ and $2012$, that add up to $3528$. Find the smallest positive apocalyptic number.

2009 China Western Mathematical Olympiad, 1

Define a sequence $(x_{n})_{n\geq 1}$ by taking $x_{1}\in\left\{5,7\right\}$; when $k\ge 1$, $x_{k+1}\in\left\{5^{x_{k}},7^{x_{k}}\right\}$. Determine all possible last two digits of $x_{2009}$.

2019 Romania Team Selection Test, 4

Let be two natural numbers $ m,n, $ and $ m $ pairwise disjoint sets of natural numbers $ A_0,A_1,\ldots ,A_{m-1}, $ each having $ n $ elements, such that no element of $ A_{i\pmod m} $ is divisible by an element of $ A_{i+1\pmod m} , $ for any natural number $ i. $ Determine the number of ordered pairs $$ (a,b)\in\bigcup_{0\le j < m} A_j\times\bigcup_{0\le j < m} A_j $$ such that $ a|b $ and such that $ \{ a,b \}\not\in A_k, $ for any $ k\in\{ 0,1,\ldots ,m-1 \} . $ [i]Radu Bumbăcea[/i]

2014 Contests, Problem 2

Clau writes all four-digit natural numbers where $3$ and $7$ are always together. How many digits does she write in total?

2020 Iran RMM TST, 1

For all prime $p>3$ with reminder $1$ or $3$ modulo $8$ prove that the number triples $(a,b,c), p=a^2+bc, 0<b<c<\sqrt{p}$ is odd. [i]Proposed by Navid Safaie[/i]

2023 Stars of Mathematics, 1

Determine all pairs $(p,q)$ of prime numbers for which $p^2+5pq+4q^2$ is a perfect square.

2015 Taiwan TST Round 3, 2

Consider the permutation of $1,2,...,n$, which we denote as $\{a_1,a_2,...,a_n\}$. Let $f(n)$ be the number of these permutations satisfying the following conditions: (1)$a_1=1$ (2)$|a_i-a_{i-1}|\le2, i=1,2,...,n-1$ what is the residue when we divide $f(2015)$ by $4$ ?

2020 Iran Team Selection Test, 6

$p$ is an odd prime number. Find all $\frac{p-1}2$-tuples $\left(x_1,x_2,\dots,x_{\frac{p-1}2}\right)\in \mathbb{Z}_p^{\frac{p-1}2}$ such that $$\sum_{i = 1}^{\frac{p-1}{2}} x_{i} \equiv \sum_{i = 1}^{\frac{p-1}{2}} x_{i}^{2} \equiv \cdots \equiv \sum_{i = 1}^{\frac{p-1}{2}} x_{i}^{\frac{p - 1}{2}} \pmod p.$$ [i]Proposed by Ali Partofard[/i]

2007 Croatia Team Selection Test, 1

Find integral solutions to the equation \[(m^{2}-n^{2})^{2}=16n+1.\]

2022 ABMC, Team

[u]Round 1[/u] [b]1.1[/b] If the sum of two non-zero integers is $28$, then find the largest possible ratio of these integers. [b]1.2[/b] If Tom rolls a eight-sided die where the numbers $1$ − $8$ are all on a side, let $\frac{m}{n}$ be the probability that the number is a factor of $16$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]1.3[/b] The average score of $35$ second graders on an IQ test was $180$ while the average score of $70$ adults was $90$. What was the total average IQ score of the adults and kids combined? [u]Round 2[/u] [b]2.1[/b] So far this year, Bob has gotten a $95$ and a 98 in Term $1$ and Term $2$. How many different pairs of Term $3$ and Term $4$ grades can Bob get such that he finishes with an average of $97$ for the whole year? Bob can only get integer grades between $0$ and $100$, inclusive. [b]2.2[/b] If a complement of an angle $M$ is one-third the measure of its supplement, then what would be the measure (in degrees) of the third angle of an isosceles triangle in which two of its angles were equal to the measure of angle $M$? [b]2.3[/b] The distinct symbols $\heartsuit, \diamondsuit, \clubsuit$ and $\spadesuit$ each correlate to one of $+, -, \times , \div$, not necessarily in that given order. Given that $$((((72 \,\, \,\, \diamondsuit \,\, \,\,36) \,\, \,\,\spadesuit \,\, \,\,0 ) \,\, \,\, \diamondsuit \,\, \,\, 32) \,\, \,\, \clubsuit \,\, \,\, 3)\,\, \,\, \heartsuit \,\, \,\, 2 = \,\, \,\, 6,$$ what is the value of $$(((((64 \,\, \,\, \spadesuit \,\, \,\, 8) \heartsuit \,\, \,\, 6) \,\, \,\, \spadesuit \,\, \,\, 5) \,\, \,\, \heartsuit \,\, \,\, 1) \,\, \,\, \clubsuit \,\, \,\, 7) \,\, \,\, \diamondsuit \,\, \,\, 1?$$ [u]Round 3[/u] [b]3.1[/b] How many ways can $5$ bunnies be chosen from $7$ male bunnies and $9$ female bunnies if a majority of female bunnies is required? All bunnies are distinct from each other. [b]3.2[/b] If the product of the LCM and GCD of two positive integers is $2021$, what is the product of the two positive integers? [b]3.3[/b] The month of April in ABMC-land is $50$ days long. In this month, on $44\%$ of the days it rained, and on $28\%$ of the days it was sunny. On half of the days it was sunny, it rained as well. The rest of the days were cloudy. How many days were cloudy in April in ABMC-land? [u]Round 4[/u] [b]4.1[/b] In how many ways can $4$ distinct dice be rolled such that a sum of $10$ is produced? [b]4.2[/b] If $p, q, r$ are positive integers such that $p^3\sqrt{q}r^2 = 50$, find the sum of all possible values of $pqr$. [b]4.3[/b] Given that numbers $a, b, c$ satisfy $a + b + c = 0$, $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}= 10$, and $ab + bc + ac \ne 0$, compute the value of $\frac{-a^2 - b^2 - a^2}{ab + bc + ac}$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2826137p24988781]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Mathcenter Contest + Longlist, 2

Let $p=2^n+1$ and $3^{(p-1)/2}+1\equiv 0 \pmod p$. Show that $p$ is a prime. [i](Zhuge Liang) [/i]

2018 District Olympiad, 1

Prove that $\left\{ \frac{m}{n}\right\}+\left\{ \frac{n}{m}\right\} \ne 1$ , for any positive integers $m, n$.

2010 China Team Selection Test, 3

For integers $n>1$, define $f(n)$ to be the sum of all postive divisors of $n$ that are less than $n$. Prove that for any positive integer $k$, there exists a positive integer $n>1$ such that $n<f(n)<f^2(n)<\cdots<f^k(n)$, where $f^i(n)=f(f^{i-1}(n))$ for $i>1$ and $f^1(n)=f(n)$.

2018 ABMC, Team

[u]Round 5[/u] [b]5.1.[/b] A triangle has lengths such that one side is $12$ less than the sum of the other two sides, the semi-perimeter of the triangle is $21$, and the largest and smallest sides have a difference of $2$. Find the area of this triangle. [b]5.2.[/b] A rhombus has side length $85$ and diagonals of integer lengths. What is the sum of all possible areas of the rhombus? [b]5.3.[/b] A drink from YAKSHAY’S SHAKE SHOP is served in a container that consists of a cup, shaped like an upside-down truncated cone, and a semi-spherical lid. The ratio of the radius of the bottom of the cup to the radius of the lid is $\frac23$ , the volume of the combined cup and lid is $296\pi$, and the height of the cup is half of the height of the entire drink container. What is the volume of the liquid in the cup if it is filled up to half of the height of the entire drink container? [u]Round 6[/u] [i]Each answer in the next set of three problems is required to solve a different problem within the same set. There is one correct solution to all three problems; however, you will receive points for any correct answer regardless whether other answers are correct.[/i] [b]6.1.[/b] Let the answer to problem $2$ be $b$. There are b people in a room, each of which is either a truth-teller or a liar. Person $1$ claims “Person $2$ is a liar,” Person $2$ claims “Person $3$ is a liar,” and so on until Person $b$ claims “Person $1$ is a liar.” How many people are truth-tellers? [b]6.2.[/b] Let the answer to problem $3$ be $c$. What is twice the area of a triangle with coordinates $(0, 0)$, $(c, 3)$ and $(7, c)$ ? [b]6.3.[/b] Let the answer to problem $ 1$ be $a$. Compute the smaller zero to the polynomial $x^2 - ax + 189$ which has $2$ integer roots. [u]Round 7[/u] [b]7.1. [/b]Sir Isaac Neeton is sitting under a kiwi tree when a kiwi falls on his head. He then discovers Neeton’s First Law of Kiwi Motion, which states: [i]Every minute, either $\left\lfloor \frac{1000}{d} \right\rfloor$ or $\left\lceil \frac{1000}{d} \right\rceil$ kiwis fall on Neeton’s head, where d is Neeton’s distance from the tree in centimeters.[/i] Over the next minute, $n$ kiwis fall on Neeton’s head. Let $S$ be the set of all possible values of Neeton’s distance from the tree. Let m and M be numbers such that $m < x < M$ for all elements $x$ in $S$. If the least possible value of $M - m$ is $\frac{2000}{16899}$ centimeters, what is the value of $n$? Note that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, and $\lceil x \rceil$ is the least integer greater than or equal to $x$. [b]7.2.[/b] Nithin is playing chess. If one queen is randomly placed on an $ 8 \times 8$ chessboard, what is the expected number of squares that will be attacked including the square that the queen is placed on? (A square is under attack if the queen can legally move there in one move, and a queen can legally move any number of squares diagonally, horizontally or vertically.) [b]7.3.[/b] Nithin is writing binary strings, where each character is either a $0$ or a $1$. How many binary strings of length $12$ can he write down such that $0000$ and $1111$ do not appear? [u]Round 8[/u] [b]8.[/b] What is the period of the fraction $1/2018$? (The period of a fraction is the length of the repeated portion of its decimal representation.) Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.1 |I|}, 13 - \frac{|I-X|}{0.1 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2765571p24215461]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Vietnam National Olympiad, 4

For every pair of positive integers $(n,m)$ with $n<m$, denote $s(n,m)$ be the number of positive integers such that the number is in the range $[n,m]$ and the number is coprime with $m$. Find all positive integers $m\ge 2$ such that $m$ satisfy these condition: i) $\frac{s(n,m)}{m-n} \ge \frac{s(1,m)}{m}$ for all $n=1,2,...,m-1$; ii) $2022^m+1$ is divisible by $m^2$

2020 Princeton University Math Competition, B1

The number $2021$ leaves a remainder of $11$ when divided by a positive integer. Find the smallest such integer.

2018 PUMaC Number Theory B, 5

What is the largest integer $n < 2018$ such that for all integers $b > 1$, $n$ has at least as many $1$'s in its base-$4$ representation as it has in its base-$b$ representation?

2015 China Team Selection Test, 6

Prove that there exist infinitely many integers $n$ such that $n^2+1$ is squarefree.

2017 India PRMO, 29

For each positive integer $n$, consider the highest common factor $h_n$ of the two numbers $n!+1$ and $(n+1)!$. For $n<100$, find the largest value of $h_n$.

2017 Ecuador NMO (OMEC), 5

Let the sequences $(x_n)$ and $(y_n)$ be defined by $x_0 = 0$, $x_1 = 1$, $x_{n + 2} = 3x_{n + 1}-2x_n$ for $n = 0, 1, ...$ and $y_n = x^2_n+2^{n + 2}$ for $n = 0, 1, ...,$ respectively. Show that for all n> 0, and n is the square of a odd integer.