This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2014 AMC 10, 24

A sequence of natural numbers is constructed by listing the first $4$, then skipping one, listing the next $5$, skipping $2$, listing $6$, skipping $3$, and, on the $n$th iteration, listing $n+3$ and skipping $n$. The sequence begins $1,2,3,4,6,7,8,9,10,13$. What is the $500,000$th number in the sequence? $ \textbf{(A)}\ 996,506\qquad\textbf{(B)}\ 996507\qquad\textbf{(C)}\ 996508\qquad\textbf{(D)}\ 996509\qquad\textbf{(E)}\ 996510 $

LMT Speed Rounds, 15

Find the least positive integer $n$ greater than $1$ such that $n^3 -n^2$ is divisible by $7^2 \times 11$. [i]Proposed by Jacob Xu[/i]

2011 Math Hour Olympiad, 8-10

[u]Round 1 [/u] [b]p1. [/b]Twelve people, some are knights and some are knaves, are sitting around a table. Knaves always lie and knights always tell the truth. At some point they start up a conversation. The first person says, “There are no knights around this table.” The second says, “There is at most one knight at this table.” The third – “There are at most two knights at the table.” And so on until the 12th says, “There are at most eleven knights at the table.” How many knights are at the table? Justify your answer. [b]p2.[/b] Show that in the sequence $10017$, $100117$, $1001117$, $...$ all numbers are divisible by $53$. [b]p3.[/b] Harry and Draco have three wands: a bamboo wand, a willow wand, and a cherry wand, all of the same length. They must perform a spell wherein they take turns picking a wand and breaking it into three parts – first Harry, then Draco, then Harry again. But in order for the spell to work, Harry has to make sure it is possible to form three triangles out of the pieces of the wands, where each triangle has a piece from each wand. How should he break the wands to ensure the success of the spell? [b]p4.[/b] A $2\times 2\times 2$ cube has $4$ equal squares on each face. The squares that share a side are called neighbors (thus, each square has $4$ neighbors – see picture). Is it possible to write an integer in each square in such a way that the sum of each number with its $4$ neighbors is equal to $13$? If yes, show how. If no, explain why not. [img]https://cdn.artofproblemsolving.com/attachments/8/4/0f7457f40be40398dee806d125ba26780f9d3a.png[/img] [b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.) [u]Round 2 [/u] [b]p6.[/b] A red square is placed on a table. $2010$ white squares, each the same size as the red square, are then placed on the table in such a way that the red square is fully covered and the sides of every white square are parallel to the sides of the red square. Is it always possible to remove one of the white squares so the red square remains completely covered? [b]p7.[/b] A computer starts with a given positive integer to which it randomly adds either $54$ or $77$ every second and prints the resulting sum after each addition. For example, if the computer is given the number $1$, then a possible output could be: $1$, $55$, $109$, $186$, $…$ Show that after finitely many seconds the computer will print a number whose last two digits are the same. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 LMT Fall, 3 Ephram

Ephram Chun is a senior and math captain at Lexington High School. He is well-loved by the freshmen, who seem to only listen to him. Other than being the father figure that the freshmen never had, Ephramis also part of the Science Bowl and Science Olympiad teams along with being part of the highest orchestra LHS has to offer. His many hobbies include playing soccer, volleyball, and the many forms of chess. We hope that he likes the questions that we’ve dedicated to him! [b]p1.[/b] Ephram is scared of freshmen boys. How many ways can Ephram and $4$ distinguishable freshmen boys sit together in a row of $5$ chairs if Ephram does not want to sit between $2$ freshmen boys? [b]p2.[/b] Ephram, who is a chess enthusiast, is trading chess pieces on the black market. Pawns are worth $\$100$, knights are worth $\$515$, and bishops are worth $\$396$. Thirty-four minutes ago, Ephrammade a fair trade: $5$ knights, $3$ bishops, and $9$ rooks for $8$ pawns, $2$ rooks, and $11$ bishops. Find the value of a rook, in dollars. [b]p3.[/b] Ephramis kicking a volleyball. The height of Ephram’s kick, in feet, is determined by $$h(t) = - \frac{p}{12}t^2 +\frac{p}{3}t ,$$ where $p$ is his kicking power and $t$ is the time in seconds. In order to reach the height of $8$ feet between $1$ and $2$ seconds, Ephram’s kicking power must be between reals $a$ and $b$. Find is $100a +b$. [b]p4.[/b] Disclaimer: No freshmen were harmed in the writing of this problem. Ephram has superhuman hearing: He can hear sounds up to $8$ miles away. Ephramstands in the middle of a $8$ mile by $24$ mile rectangular grass field. A freshman falls from the sky above a point chosen uniformly and randomly on the grass field. The probability Ephram hears the freshman bounce off the ground is $P\%$. Find $P$ rounded to the nearest integer. [img]https://cdn.artofproblemsolving.com/attachments/4/4/29f7a5a709523cd563f48176483536a2ae6562.png[/img] [b]p5.[/b] Ephram and Brandon are playing a version of chess, sitting on opposite sides of a $6\times 6$ board. Ephram has $6$ white pawns on the row closest to himself, and Brandon has $6$ black pawns on the row closest to himself. During each player’s turn, their only legal move is to move one pawn one square forward towards the opposing player. Pawns cannot move onto a space occupied by another pawn. Players alternate turns, and Ephram goes first (of course). Players take turns until there are no more legal moves for the active player, at which point the game ends. Find the number of possible positions the game can end in. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Brazil National Olympiad, 3

Find the least non-negative integer $n$ such that exists a non-negative integer $k$ such that the last 2012 decimal digits of $n^k$ are all $1$'s.

2019 Korea National Olympiad, 3

Suppose that positive integers $m,n,k$ satisfy the equations $$m^2+1=2n^2, 2m^2+1=11k^2.$$ Find the residue when $n$ is divided by $17$.

Maryland University HSMC part II, 2016

[b]p1.[/b] Fill in each box with an integer from $1$ to $9$. Each number in the right column is the product of the numbers in its row, and each number in the bottom row is the product of the numbers in its column. Some numbers may be used more than once, and not every number from $1$ to $9$ is required to be used. [img]https://cdn.artofproblemsolving.com/attachments/c/0/0212181d87f89aac374f75f1f0bde6d0600037.png[/img] [b]p2.[/b] A set $X$ is called [b]prime-difference free [/b] (henceforth pdf) if for all $x, y \in X$, $|x - y|$ is not prime. Find the number n such that the following both hold. $\bullet$ There is a pdf set of size $n$ that is a subset of $\{1,..., 2016\}$, and $\bullet$ There is no pdf set of size $n + 1$ that is a subset of $\{1,..., 2016\}$. [b]p3.[/b] Let $X_1,...,X_{15}$ be a sequence of points in the $xy$-plane such that $X_1 = (10, 0)$ and $X_{15} = (0, 10)$. Prove that for some $i \in \{1, 2,..., 14\}$, the midpoint of $X_iX_{i+1}$ is of distance greater than $1/2$ from the origin. [b]p4.[/b] Suppose that $s_1, s_2,..., s_{84}$ is a sequence of letters from the set $\{A,B,C\}$ such that every four-letter sequence from $\{A,B,C\}$ occurs exactly once as a consecutive subsequence $s_k$, $s_{k+1}$, $s_{k+2}$, $s_{k+3}$. Suppose that $$(s_1, s_2, s_3, s_4, s_5) = (A,B,B,C,A).$$ What is $s_{84}$? Prove your answer. [b]p5.[/b] Determine (with proof) whether or not there exists a sequence of positive real numbers $a_1, a_2, a_3,...$ with both of the following properties: $\bullet$ $\sum^n_{i=1} a_i \le n^2$, for all $n \ge 1$, and $\bullet$ $\sum^n_{i=1} \frac{1}{a_i} \le 2016$, for all $n \ge 1$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Germany Team Selection Test, 1

$n$ is an odd positive integer and $x,y$ are two rational numbers satisfying $$x^n+2y=y^n+2x.$$Prove that $x=y$.

2020 CHMMC Winter (2020-21), 7

For any positive integer $n$, let $f(n)$ denote the sum of the positive integers $k \le n$ such that $k$ and $n$ are relatively prime. Let $S$ be the sum of $\frac{1}{f(m)}$ over all positive integers $m$ that are divisible by at least one of $2$, $3$, or $5$, and whose prime factors are only $2$, $3$, or $5$. Then $S = \frac{p}{q}$ for relatively prime positive integers $p$ and $q$. Find $p+q$.

2017 ELMO Shortlist, 2

An integer $n>2$ is called [i]tasty[/i] if for every ordered pair of positive integers $(a,b)$ with $a+b=n,$ at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers? [i]Proposed by Vincent Huang[/i]

2005 Hungary-Israel Binational, 3

Find all sequences $x_{1},x_{2},...,x_{n}$ of distinct positive integers such that $\frac{1}{2}=\sum_{i=1}^{n}\frac{1}{x_{i}^{2}}$.

2022 Korea Winter Program Practice Test, 6

Determine all positive integers $(x_1,x_2,x_3,y_1,y_2,y_3)$ such that $y_1+ny_2^n+n^2y_3^{2n}$ divides $x_1+nx_2^n+n^2x_3^{2n}$ for all positive integer $n$.

2005 Taiwan TST Round 2, 3

Let $k$ be a fixed integer greater than 1, and let ${m=4k^2-5}$. Show that there exist positive integers $a$ and $b$ such that the sequence $(x_n)$ defined by \[x_0=a,\quad x_1=b,\quad x_{n+2}=x_{n+1}+x_n\quad\text{for}\quad n=0,1,2,\dots,\] has all of its terms relatively prime to $m$. [i]Proposed by Jaroslaw Wroblewski, Poland[/i]

2023 BMT, 10

Let $a$ denote the positive real root of the polynomial $x^2 -3x-2$. Compute the remainder when $\lfloor a^{1000}\rfloor $ is divided by the prime number $997$. Here, $\lfloor r\rfloor$ denotes the greatest integer less than $r$.

2021 Saudi Arabia Training Tests, 30

For a positive integer $k$, denote by $f(k)$ the number of positive integer $m$ such that the remainder of $km$ modulo $2019^3$ is greater than $m$. Find the amount of different numbers among $f(1), f(2), ..., f(2019^3)$.

2023 Dutch Mathematical Olympiad, 1

A number is called [i]nillless [/i] if it is integer and positive and contains no zeros. You can make a positive integer nillless by simply omitting the zeros. We denote this with square brackets, for example $[2050] = 25$ and $[13] = 13$. When we multiply, add, and subtract we indicate with square brackets when we omit the zeros. For example, $[[4 \cdot 5] + 7] = [[20] + 7] = [2 + 7] = [9] = 9$ and $[[5 + 5] + 9] = [[10] + 9] = [1 + 9] = [10] = 1$. The following is known about the two numbers $a$ and $b$: $\bullet$ $a$ and $b$ are nillless, $\bullet$ $1 < a < b < 100$, $\bullet$ $[[a \cdot b] - 1] = 1$. Which pairs $(a, b)$ satisfy these three requirements?

2005 International Zhautykov Olympiad, 1

Prove that the equation $ x^{5} \plus{} 31 \equal{} y^{2}$ has no integer solution.

2018 Regional Olympiad of Mexico West, 4

The letters $A,B,C$ and $D$ each represent a different digit, so each of the four-digit numbers $ABCD$, $BCDA$, $CDAB$ and $DABC$ satisfy that its least prime divisor is equal to $11$. Determine all possible values of the sum $$ABCD +BCDA+CDAB+DABC$$ and for each possible value of said sum, give an example of a choice of digits $A,B,C$ and $D$ with which to obtain that value and which satisfies the conditions established above.

2003 Flanders Math Olympiad, 3

A number consists of 3 different digits. The sum of the 5 other numbers formed with those digits is 2003. Find the number.

1998 Poland - First Round, 5

Find all pairs of positive integers $ x,y$ satisfying the equation \[ y^x \equal{} x^{50}\]

2015 Romania Team Selection Tests, 2

Given an integer $k \geq 2$, determine the largest number of divisors the binomial coefficient $\binom{n}{k}$ may have in the range $n-k+1, \ldots, n$ , as $n$ runs through the integers greater than or equal to $k$.

1996 All-Russian Olympiad Regional Round, 8.7

Dunno wrote several different natural numbers on the board and divided (in his head) the sum of these numbers by their product. After this, Dunno erased the smallest number and divided (again in his mind) the amount of the remaining numbers by their product. The second result was $3$ times greater than the first. What number did Dunno erase?

2015 Indonesia Juniors, day 1

p1. Find an integer that has the following properties: a) Every two adjacent digits in the number are prime. b) All prime numbers referred to in item (a) above are different. p2. Determine all integers up to $\sqrt{50+\sqrt{n}}+\sqrt{50-\sqrt{n}}$ p3. The following figure shows the path to form a series of letters and numbers “OSN2015”. Determine as many different paths as possible to form the series of letters and numbers by following the arrows. [img]https://cdn.artofproblemsolving.com/attachments/6/b/490a751457871184a506c2966f8355f20cebbd.png[/img] p4. Given an acute triangle $ABC$ with $L$ as the circumcircle. From point $A$, a perpendicular line is drawn on the line segment $BC$ so that it intersects the circle $L$ at point $X$. In a similar way, a perpendicular line is made from point $B$ and point $C$ so that it intersects the circle $L$, at point $Y$ and point $Z$, respectively. Is arc length $AY$ = arc length $AZ$ ? p5. The students of class VII.3 were divided into five groups: $A, B, C, D$ and $E$. Each group conducted five science experiments for five weeks. Each week each group performs an experiment that is different from the experiments conducted by other groups. Determine at least two possible trial schedules in week five, based on the following information: $\bullet$ In the first week, group$ D$ did experiment $4$. $\bullet$ In the second week, group $C$ did the experiment $5$. $\bullet$ In the third week, group $E$ did the experiment $5$. $\bullet$ In the fourth week, group $A$ did experiment $4$ and group $D$ did experiment $2$.

2023 Serbia Team Selection Test, P5

For positive integers $a$ and $b$, define \[a!_b=\prod_{1\le i\le a\atop i \equiv a \mod b} i\] Let $p$ be a prime and $n>3$ a positive integer. Show that there exist at least 2 different positive integers $t$ such that $1<t<p^n$ and $t!_p\equiv 1\pmod {p^n}$.

2012 Thailand Mathematical Olympiad, 10

Let $x$ be an irrational number. Show that there are integers $m$ and $n$ such that $\frac{1}{2555}< mx + n <\frac{1}{2012}$