This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2012 Greece Junior Math Olympiad, 3

Given is the equation $(m, n) +[m, n] =m+n$ where $m, n$ are positive integers and m>n. a) Prove that n divides m. b) If $m-n=10$, solve the equation.

2018 Switzerland - Final Round, 3

Determine all natural integers $n$ for which there is no triplet $(a, b, c)$ of natural numbers such that: $$n = \frac{a \cdot \,\,lcm(b, c) + b \cdot lcm \,\,(c, a) + c \cdot lcm \,\, (a, b)}{lcm \,\,(a, b, c)}$$

2021 ABMC., Speed

[i]25 problems for 30 minutes[/i] [b]p1.[/b] You and nine friends spend $4000$ dollars on tickets to attend the new Harry Styles concert. Unfortunately, six friends cancel last minute due to the u. You and your remaining friends still attend the concert and split the original cost of $4000$ dollars equally. What percent of the total cost does each remaining individual have to pay? [b]p2.[/b] Find the number distinct $4$ digit numbers that can be formed by arranging the digits of $2021$. [b]p3.[/b] On a plane, Darnay draws a triangle and a rectangle such that each side of the triangle intersects each side of the rectangle at no more than one point. What is the largest possible number of points of intersection of the two shapes? [b]p4.[/b] Joy is thinking of a two-digit number. Her hint is that her number is the sum of two $2$-digit perfect squares $x_1$ and $x_2$ such that exactly one of $x_i - 1$ and $x_i + 1$ is prime for each $i = 1, 2$. What is Joy's number? [b]p5.[/b] At the North Pole, ice tends to grow in parallelogram structures of area $60$. On the other hand, at the South Pole, ice grows in right triangular structures, in which each triangular and parallelogram structure have the same area. If every ice triangle $ABC$ has legs $\overline{AB}$ and $\overline{AC}$ that are integer lengths, how many distinct possible lengths are there for the hypotenuse $\overline{BC}$? [b]p6.[/b] Carlsen has some squares and equilateral triangles, all of side length $1$. When he adds up the interior angles of all shapes, he gets $1800^o$. When he adds up the perimeters of all shapes, he gets $24$. How many squares does he have? [b]p7.[/b] Vijay wants to hide his gold bars by melting and mixing them into a water bottle. He adds $100$ grams of liquid gold to $100$ grams of water. His liquefied gold bars have a density of $20$ g/ml and water has a density of $1$ g/ml. Given that the density of the mixture in g/mL can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute the sum $m + n$. (Note: density is mass divided by volume, gram (g) is unit of mass and ml is unit of volume. Further, assume the volume of the mixture is the sum of the volumes of the components.) [b]p8.[/b] Julius Caesar has epilepsy. Specifically, if he sees $3$ or more flashes of light within a $0.1$ second time frame, he will have a seizure. His enemy Brutus has imprisoned him in a room with $4$ screens, which flash exactly every $4$, $5$, $6$, and $7$ seconds, respectively. The screens all flash at once, and $105$ seconds later, Caesar opens his eyes. How many seconds after he opened his eyes will Caesar first get a seizure? [b]p9.[/b] Angela has a large collection of glass statues. One day, she was bored and decided to use some of her statues to create an entirely new one. She melted a sphere with radius $12$ and a cone with height of 18 and base radius of $2$. If Angela wishes to create a new cone with a base radius $2$, what would the the height of the newly created cone be? [b]p10.[/b] Find the smallest positive integer $N$ satisfying these properties: (a) No perfect square besides $1$ divides $N$. (b) $N$ has exactly $16$ positive integer factors. [b]p11.[/b] The probability of a basketball player making a free throw is $\frac15$. The probability that she gets exactly $2$ out of $4$ free throws in her next game can be expressed as $\frac{m}{n}$ for relatively prime positive integers m and n. Find $m + n$. [b]p12.[/b] A new donut shop has $1000$ boxes of donuts and $1000$ customers arriving. The boxes are numbered $1$ to $1000$. Initially, all boxes are lined up by increasing numbering and closed. On the first day of opening, the first customer enters the shop and opens all the boxes for taste testing. On the second day of opening, the second customer enters and closes every box with an even number. The third customer then "reverses" (if closed, they open it and if open, they close it) every box numbered with a multiple of three, and so on, until all $1000$ customers get kicked out for having entered the shop and reversing their set of boxes. What is the number on the sixth box that is left open? [b]p13.[/b] For an assignment in his math class, Michael must stare at an analog clock for a period of $7$ hours. He must record the times at which the minute hand and hour hand form an angle of exactly $90^o$, and he will receive $1$ point for every time he records correctly. What is the maximum number of points Michael can earn on his assignment? [b]p14.[/b] The graphs of $y = x^3 +5x^2 +4x-3$ and $y = -\frac15 x+1$ intersect at three points in the Cartesian plane. Find the sum of the $y$-coordinates of these three points. [b]p15.[/b] In the quarterfinals of a single elimination countdown competition, the $8$ competitors are all of equal skill. When any $2$ of them compete, there is exactly a $50\%$ chance of either one winning. If the initial bracket is randomized, the probability that two of the competitors, Daniel and Anish, face off in one of the rounds can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p$, $q$. Find $p + q$. [b]p16.[/b] How many positive integers less than or equal to $1000$ are not divisible by any of the numbers $2$, $3$, $5$ and $11$? [b]p17.[/b] A strictly increasing geometric sequence of positive integers $a_1, a_2, a_3,...$ satisfies the following properties: (a) Each term leaves a common remainder when divided by $7$ (b) The first term is an integer from $1$ to $6$ (c) The common ratio is an perfect square Let $N$ be the smallest possible value of $\frac{a_{2021}}{a_1}$. Find the remainder when $N$ is divided by $100$. [b]p18.[/b] Suppose $p(x) = x^3 - 11x^2 + 36x - 36$ has roots $r, s,t$. Find %\frac{r^2 + s^2}{t}+\frac{s^2 + t^2}{r}+\frac{t^2 + r^2}{s}%. [b]p19.[/b] Let $a, b \le 2021$ be positive integers. Given that $ab^2$ and $a^2b$ are both perfect squares, let $G = gcd(a, b)$. Find the sum of all possible values of $G$. [b]p20.[/b] Jessica rolls six fair standard six-sided dice at the same time. Given that she rolled at least four $2$'s and exactly one $3$, the probability that all six dice display prime numbers can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. What is $m + n$? [b]p21.[/b] Let $a, b, c$ be numbers such $a + b + c$ is real and the following equations hold: $$a^3 + b^3 + c^3 = 25$$ $$\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}= 1$$ $$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{25}{9}$$ The value of $a + b + c$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. Find $m + n$. [b]p22.[/b] Let $\omega$ be a circle and $P$ be a point outside $\omega$. Let line $\ell$ pass through $P$ and intersect $\omega$ at points $A,B$ and with $PA < PB$ and let $m$ be another line passing through $P$ intersecting $\omega$ at points $C,D$ with $PC < PD$. Let X be the intersection of $AD$ and $BC$. Given that $\frac{PC}{CD}=\frac23$, $\frac{PC}{PA}=\frac45$, and $\frac{[ABC]}{[ACD]}=\frac79$,the value of $\frac{[BXD]}{[BXA]}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$: Find $m + n$. [b]p23.[/b] Define the operation $a \circ b =\frac{a^2 + 2ab + a - 12}{b}$. Given that $1 \circ (2 \circ (3 \circ (... 2019 \circ (2020 \circ 2021)))...)$ can be expressed as $-\frac{a}{b}$ for some relatively prime positive integers $a,b$, compute $a + b$. [b]p24.[/b] Find the largest integer $n \le 2021$ for which $5^{n-3} | (n!)^4$ [b]p25.[/b] On the Cartesian plane, a line $\ell$ intersects a parabola with a vertical axis of symmetry at $(0, 5)$ and $(4, 4)$. The focus $F$ of the parabola lies below $\ell$, and the distance from $F$ to $\ell$ is $\frac{16}{\sqrt{17}}$. Let the vertex of the parabola be $(x, y)$. The sum of all possible values of $y$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Korea Junior Math Olympiad, 1

Prove that $ 7^{2^{20}} + 7^{2^{19}} + 1 $ has at least $ 21 $ distinct prime divisors.

1998 Belarus Team Selection Test, 3

Let $1=d_1<d_2<d_3<...<d_k=n$ be all different divisors of positive integer $n$ written in ascending order. Determine all $n$ such that $$d_7^2+d_{10}^2=(n/d_{22})^2.$$

2022 CMWMC, R8

[u]Set 8[/u] [b]p22.[/b] For monic quadratic polynomials $P = x^2 + ax + b$ and $Q = x^2 + cx + d$, where $1 \le a, b, c, d \le 10$ are integers, we say that $P$ and $Q$ are friends if there exists an integer $1 \le n \le 10$ such that $P(n) = Q(n)$. Find the total number of ordered pairs $(P, Q)$ of such quadratic polynomials that are friends. [b]p23.[/b] A three-dimensional solid has six vertices and eight faces. Two of these faces are parallel equilateral triangles with side length $1$, $\vartriangle A_1A_2A_3$ and $\vartriangle B_1B_2B_3$. The other six faces are isosceles right triangles — $\vartriangle A_1B_2A_3$, $\vartriangle A_2B_3A_1$, $\vartriangle A_3B_1A_2$, $\vartriangle B_1A_2B_3$, $\vartriangle B_2A_3B_1$, $\vartriangle B_3A_1B_2$ — each with a right angle at the second vertex listed (so for instace $\vartriangle A_1B_2A_3$ has a right angle at $B_2$). Find the volume of this solid. [b]p24.[/b] The digits $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$ are each colored red, blue, or green. Find the number of colorings such that any integer $ n \ge 2$ has that (a) If $n$ is prime, then at least one digit of $n$ is not blue. (b) If $n$ is composite, then at least one digit of $n$ is not green. PS. You should use hide for answers.

Mid-Michigan MO, Grades 7-9, 2007

[b]p1.[/b] The Evergreen School booked buses for a field trip. Altogether, $138$ people went to West Lake, while $115$ people went to East Lake. The buses all had the same number of seats and every bus has more than one seat. All seats were occupied and everybody had a seat. How many seats were on each bus? [b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $99$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a $6$ cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $500$ coins? [b]p3.[/b] Find all solutions $a, b, c, d, e, f, g, h$ if these letters represent distinct digits and the following multiplication is correct: $\begin{tabular}{ccccc} & & a & b & c \\ + & & & d & e \\ \hline & f & a & g & c \\ x & b & b & h & \\ \hline f & f & e & g & c \\ \end{tabular}$ [b]p4.[/b] Is it possible to find a rectangle of perimeter $10$ m and cut it in rectangles (as many as you want) so that the sum of the perimeters is $500$ m? [b]p5.[/b] The picture shows a maze with chambers (shown as circles) and passageways (shown as segments). A cat located in chamber $C$ tries to catch a mouse that was originally in the chamber $M$. The cat makes the first move, moving from chamber $C$ to one of the neighboring chambers. Then the mouse moves, then the cat, and so forth. At each step, the cat and the mouse can move to any neighboring chamber or not move at all. The cat catches the mouse by moving into the chamber currently occupied by the mouse. Can the cat get the mouse? [img]https://cdn.artofproblemsolving.com/attachments/9/9/25f61e1499ff1cfeea591cb436d33eb2cdd682.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Saudi Arabia IMO TST, 1

Find all pairs $(m,n)$ of integers, $m ,n \ge 2$ such that $mn - 1$ divides $n^3 - 1$.

2016 Belarus Team Selection Test, 3

Solve the equation $p^3-q^3=pq^3-1$ in primes $p,q$.

1981 Poland - Second Round, 4

The given natural numbers are $ k, n $. We inductively define two sequences of numbers $ (a_j) $ and $ (r_j) $ as follows: Step one: we divide $ k $ by $ n $ and get the quotient $ a_1 $ and the remainder $ r_i $, step j: we divide $ k+r_{j-1} $ by $ n $ and get the quotient $ a_j $ and the remainder $ r_j $. Calculate the sum of $ a_1 + \ldots + a_n $.

2016 Abels Math Contest (Norwegian MO) Final, 2a

Find all positive integers $a, b, c, d$ with $a \le b$ and $c \le d$ such that $\begin{cases} a + b = cd \\ c + d = ab \end{cases}$ .

2017, SRMC, 4

Let $p$ be a prime number such that $p\equiv 1\pmod 9$. Show that there exist an integer $n$ such that $n^3-3n+1$ is divisible by $p$.

2013 Kyiv Mathematical Festival, 2

For which positive integers $n \ge 2$ it is possible to represent the number $n^2$ as a sum of several distinct positive integers not exceeding $2n$?

2020 Balkan MO Shortlist, N3

Given an integer $k\geq 2$, determine all functions $f$ from the positive integers into themselves such that $f(x_1)!+f(x_2)!+\cdots f(x_k)!$ is divisibe by $x_1!+x_2!+\cdots x_k!$ for all positive integers $x_1,x_2,\cdots x_k$. $Albania$

2009 Korea - Final Round, 6

Find all pairs of two positive integers $(m,n)$ satisfying $ 3^m - 7^n = 2 $.

Math Hour Olympiad, Grades 8-10, 2017

[u]Round 1[/u] [b]p1. [/b]The Queen of Bees invented a new language for her hive. The alphabet has only $6$ letters: A, C, E, N, R, T; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the word TRANCE immediately follows NECTAR. What is the last word in the dictionary? [b]p2.[/b] Is it possible to solve the equation $\frac{1}{x}= \frac{1}{y} +\frac{1}{z}$ with $x,y,z$ integers (positive or negative) such that one of the numbers $x,y,z$ has one digit, another has two digits, and the remaining one has three digits? [b]p3.[/b] The $10,000$ dots in a $100\times 100$ square grid are all colored blue. Rekha can paint some of them red, but there must always be a blue dot on the line segment between any two red dots. What is the largest number of dots she can color red? The picture shows a possible coloring for a $5\times 7$ grid. [img]https://cdn.artofproblemsolving.com/attachments/0/6/795f5ab879938ed2a4c8844092b873fb8589f8.jpg[/img] [b]p4.[/b] Six flies rest on a table. You have a swatter with a checkerboard pattern, much larger than the table. Show that there is always a way to position and orient the swatter to kill at least five of the flies. Each fly is much smaller than a swatter square and is killed if any portion of a black square hits any part of the fly. [b]p5.[/b] Maryam writes all the numbers $1-81$ in the cells of a $9\times 9$ table. Tian calculates the product of the numbers in each of the nine rows, and Olga calculates the product of the numbers in every column. Could Tian's and Olga's lists of nine products be identical? [u]Round 2[/u] [b]p6.[/b] A set of points in the plane is epic if, for every way of coloring the points red or blue, it is possible to draw two lines such that each blue point is on a line, but none of the red points are. The figure shows a particular set of $4$ points and demonstrates that it is epic. What is the maximum possible size of an epic set? [img]https://cdn.artofproblemsolving.com/attachments/e/f/44fd1679c520bdc55c78603190409222d0b721.jpg[/img] [b]p7.[/b] Froggy Chess is a game played on a pond with lily pads. First Judit places a frog on a pad of her choice, then Magnus places a frog on a different pad of his choice. After that, they alternate turns, with Judit moving first. Each player, on his or her turn, selects either of the two frogs and another lily pad where that frog must jump. The jump must reduce the distance between the frogs (all distances between the lily pads are different), but both frogs cannot end up on the same lily pad. Whoever cannot make a move loses. The picture below shows the jumps permitted in a particular situation. Who wins the game if there are $2017$ lily pads? [img]https://cdn.artofproblemsolving.com/attachments/a/9/1a26e046a2a614a663f9d317363aac61654684.jpg[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Middle European Mathematical Olympiad, 4

Let $n, m$ be positive integers. A set $S$ of positive integers is called $(n, m)$-good, if: (1) $m \in S$; (2) for all $a\in S$, all divisors of $a$ are also in $S$; (3) for all distinct $a, b \in S$, $a^n+b^n \in S$. For which $(n, m)$, the only $(n, m)$-good set is $\mathbb{N}$?

2011 Baltic Way, 19

Let $p\neq 3$ be a prime number. Show that there is a non-constant arithmetic sequence of positive integers $x_1,x_2,\ldots ,x_p$ such that the product of the terms of the sequence is a cube.

EMCC Guts Rounds, 2014

[u]Round 5[/u] [b]p13.[/b] Five different schools are competing in a tournament where each pair of teams plays at most once. Four pairs of teams are randomly selected and play against each other. After these four matches, what is the probability that Chad's and Jordan's respective schools have played against each other, assuming that Chad and Jordan come from different schools? [b]p14.[/b] A square of side length $1$ and a regular hexagon are both circumscribed by the same circle. What is the side length of the hexagon? [b]p15.[/b] From the list of integers $1,2, 3,...,30$ Jordan can pick at least one pair of distinct numbers such that none of the $28$ other numbers are equal to the sum or the difference of this pair. Of all possible such pairs, Jordan chooses the pair with the least sum. Which two numbers does Jordan pick? [u]Round 6[/u] [b]p16.[/b] What is the sum of all two-digit integers with no digit greater than four whose squares also have no digit greater than four? [b]p17.[/b] Chad marks off ten points on a circle. Then, Jordan draws five chords under the following constraints: $\bullet$ Each of the ten points is on exactly one chord. $\bullet$ No two chords intersect. $\bullet$ There do not exist (potentially non-consecutive) points $A, B,C,D,E$, and $F$, in that order around the circle, for which $AB$, $CD$, and $EF$ are all drawn chords. In how many ways can Jordan draw these chords? [b]p18.[/b] Chad is thirsty. He has $109$ cubic centimeters of silicon and a 3D printer with which he can print a cup to drink water in. He wants a silicon cup whose exterior is cubical, with five square faces and an open top, that can hold exactly $234$ cubic centimeters of water when filled to the rim in a rectangular-box-shaped cavity. Using all of his silicon, he prints a such cup whose thickness is the same on the five faces. What is this thickness, in centimeters? [u]Round 7[/u] [b]p19.[/b] Jordan wants to create an equiangular octagon whose side lengths are exactly the first $8$ positive integers, so that each side has a different length. How many such octagons can Jordan create? [b]p20.[/b] There are two positive integers on the blackboard. Chad computes the sum of these two numbers and tells it to Jordan. Jordan then calculates the sum of the greatest common divisor and the least common multiple of the two numbers, and discovers that her result is exactly $3$ times as large as the number Chad told her. What is the smallest possible sum that Chad could have said? [b]p21.[/b] Chad uses yater to measure distances, and knows the conversion factor from yaters to meters precisely. When Jordan asks Chad to convert yaters into meters, Chad only gives Jordan the result rounded to the nearest integer meters. At Jordan's request, Chad converts $5$ yaters into $8$ meters and $7$ yaters into $12$ meters. Given this information, how many possible numbers of meters could Jordan receive from Chad when requesting to convert $2014$ yaters into meters? [u]Round 8[/u] [b]p22.[/b] Jordan places a rectangle inside a triangle with side lengths $13$, $14$, and $15$ so that the vertices of the rectangle all lie on sides of the triangle. What is the maximum possible area of Jordan's rectangle? [b]p23.[/b] Hoping to join Chad and Jordan in the Exeter Space Station, there are $2014$ prospective astronauts of various nationalities. It is given that $1006$ of the astronaut applicants are American and that there are a total of $64$ countries represented among the applicants. The applicants are to group into $1007$ pairs with no pair consisting of two applicants of the same nationality. Over all possible distributions of nationalities, what is the maximum number of possible ways to make the $1007$ pairs of applicants? Express your answer in the form $a \cdot b!$, where $a$ and $b$ are positive integers and $a$ is not divisible by $b + 1$. Note: The expression $k!$ denotes the product $k \cdot (k - 1) \cdot ... \cdot 2 \cdot 1$. [b]p24.[/b] We say a polynomial $P$ in $x$ and $y$ is $n$-[i]good [/i] if $P(x, y) = 0$ for all integers $x$ and $y$, with $x \ne y$, between $1$ and $n$, inclusive. We also define the complexity of a polynomial to be the maximum sum of exponents of $x$ and $y$ across its terms with nonzero coeffcients. What is the minimal complexity of a nonzero $4$-good polynomial? In addition, give an example of a $4$-good polynomial attaining this minimal complexity. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2915803p26040550]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 HMNT, 8

Mark writes the expression $\sqrt{d}$ for each positive divisor $d$ of $8!$ on the board. Seeing that these expressions might not be worth points on HMMT, Rishabh simplifies each expression to the form $a \sqrt{b} $ where $a$ and $b$ are integers such that $b$ is not divisible by the square of a prime number. (For example, $\sqrt{20}$, $\sqrt{16}$, and $\sqrt{6}$ simplify to $2\sqrt5$, $4\sqrt1$, and $1\sqrt6$, respectively.) Compute the sum of $a+b$ across all expressions that Rishabh writes.

2014 NIMO Problems, 1

You drop a 7 cm long piece of mechanical pencil lead on the floor. A bully takes the lead and breaks it at a random point into two pieces. A piece of lead is unusable if it is 2 cm or shorter. If the expected value of the number of usable pieces afterwards is $\frac{m}n$ for relatively prime positive integers $m$ and $n$, compute $100m + n$. [i]Proposed by Aaron Lin[/i]

2017 Miklós Schweitzer, 3

For every algebraic integer $\alpha$ define its positive degree $\text{deg}^+(\alpha)$ to be the minimal $k\in\mathbb{N}$ for which there exists a $k\times k$ matrix with non-negative integer entries with eigenvalue $\alpha$. Prove that for any $n\in\mathbb{N}$, every algebraic integer $\alpha$ with degree $n$ satisfies $\text{deg}^+(\alpha)\le 2n$.

2018 Cyprus IMO TST, Source

[url=https://artofproblemsolving.com/community/c677808][b]Cyprus IMO TST 2018[/b][/url] [url=https://artofproblemsolving.com/community/c6h1666662p10591751][b]Problem 1.[/b][/url] Determine all integers $n \geq 2$ for which the number $11111$ in base $n$ is a perfect square. [url=https://artofproblemsolving.com/community/c6h1666663p10591753][b]Problem 2.[/b][/url] Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$. [url=https://artofproblemsolving.com/community/c6h1666660p10591747][b]Problem 3.[/b][/url] Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression $$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$obtains its minimum value. [url=https://artofproblemsolving.com/community/c6h1666661p10591749][b]Problem 4.[/b][/url] Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$. (a) Prove that $$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence: $$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$

2015 Lusophon Mathematical Olympiad, 6

Let $(a_n)$ be defined by: $$ a_1 = 2, \qquad a_{n+1} = a_n^3 - a_n + 1 $$ Consider positive integers $n,p$, where $p$ is an odd prime. Prove that if $p | a_n$, then $p > n$.

2006 USA Team Selection Test, 4

Let $n$ be a positive integer. Find, with proof, the least positive integer $d_{n}$ which cannot be expressed in the form \[\sum_{i=1}^{n}(-1)^{a_{i}}2^{b_{i}},\] where $a_{i}$ and $b_{i}$ are nonnegative integers for each $i.$