This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1987 IMO Longlists, 58

Find, with argument, the integer solutions of the equation \[3z^2 = 2x^3 + 385x^2 + 256x - 58195.\]

2024 Iran Team Selection Test, 10

Let $\{a_n\}$ be a sequence of natural numbers such that each prime number greater than $1402$ divides a member of that. Prove that the set of prime divisors of members of sequence $\{b_n\}$ which $b_n=a_1a_2...a_n-1$ , is infinite. [i]Proposed by Navid Safaei[/i]

2008 Romania Team Selection Test, 1

Let $ n$ be an integer, $ n\geq 2$. Find all sets $ A$ with $ n$ integer elements such that the sum of any nonempty subset of $ A$ is not divisible by $ n\plus{}1$.

2020 Azerbaijan IZHO TST, 6

Define a sequence ${{a_n}}_{n\ge1}$ such that $a_1=1$ , $a_2=2$ and $a_{n+1}$ is the smallest positive integer $m$ such that $m$ hasn't yet occurred in the sequence and also $gcd(m,a_n)\neq{1}$. Show that all positive integers occur in the sequence.

2015 Iran Team Selection Test, 3

Let $ b_1<b_2<b_3<\dots $ be the sequence of all natural numbers which are sum of squares of two natural numbers. Prove that there exists infinite natural numbers like $m$ which $b_{m+1}-b_m=2015$ .

2006 IMO Shortlist, 3

We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by \[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right), \] where $\lfloor x\rfloor$ denotes the integer part of $x$. [b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often. [b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often. [i]Proposed by Johan Meyer, South Africa[/i]

1995 May Olympiad, 3

It is initially considered a number of three different digits, none of which is equal to zero. Changing instead two of its digits meet a second number less than the first. If the difference between the first and second is a two-digit number and the sum of the first and the second is a palindromic number less than $500$, what are the palindromics that can be obtained?

2003 India IMO Training Camp, 9

Let $n$ be a positive integer and $\{A,B,C\}$ a partition of $\{1,2,\ldots,3n\}$ such that $|A|=|B|=|C|=n$. Prove that there exist $x \in A$, $y \in B$, $z \in C$ such that one of $x,y,z$ is the sum of the other two.

Mid-Michigan MO, Grades 7-9, 2022

[b]p1.[/b] Find the unknown angle $a$ of the triangle inscribed in the square. [img]https://cdn.artofproblemsolving.com/attachments/b/1/4aab5079dea41637f2fa22851984f886f034df.png[/img] [b]p2.[/b] Draw a polygon in the plane and a point outside of it with the following property: no edge of the polygon is completely visible from that point (in other words, the view is obstructed by some other edge). [b]p3.[/b] This problem has two parts. In each part, $2022$ real numbers are given, with some additional property. (a) Suppose that the sum of any three of the given numbers is an integer. Show that the total sum of the $2022$ numbers is also an integer. (b) Suppose that the sum of any five of the given numbers is an integer. Show that 5 times the total sum of the $2022$ numbers is also an integer, but the sum itself is not necessarily an integer. [b]p4.[/b] Replace stars with digits so that the long multiplication in the example below is correct. [img]https://cdn.artofproblemsolving.com/attachments/9/7/229315886b5f122dc0675f6d578624e83fc4e0.png[/img] [b]p5.[/b] Five nodes of a square grid paper are marked (called marked points). Show that there are at least two marked points such that the middle point of the interval connecting them is also a node of the square grid paper [b]p6.[/b] Solve the system $$\begin{cases} \dfrac{xy}{x+y}=\dfrac{8}{3} \\ \dfrac{yz}{y+z}=\dfrac{12}{5} \\\dfrac{xz}{x+z}=\dfrac{24}{7} \end{cases}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2025 China Team Selection Test, 13

Find all positive integers \( m \) for which there exists an infinite subset \( A \) of the positive integers such that: for any pairwise distinct positive integers \( a_1, a_2, \cdots, a_m \in A \), the sum \( a_1 + a_2 + \cdots + a_m \) and the product \( a_1a_2 \cdots a_m \) are both square-free.

1996 Czech and Slovak Match, 4

Decide whether there exists a function $f : Z \rightarrow Z$ such that for each $k =0,1, ...,1996$ and for any integer $m$ the equation $f (x)+kx = m$ has at least one integral solution $x$.

2018 IOM, 3

Let $k$ be a positive integer such that $p = 8k + 5$ is a prime number. The integers $r_1, r_2, \dots, r_{2k+1}$ are chosen so that the numbers $0, r_1^4, r_2^4, \dots, r_{2k+1}^4$ give pairwise different remainders modulo $p$. Prove that the product \[\prod_{1 \leqslant i < j \leqslant 2k+1} \big(r_i^4 + r_j^4\big)\] is congruent to $(-1)^{k(k+1)/2}$ modulo $p$. (Two integers are congruent modulo $p$ if $p$ divides their difference.) [i]Fedor Petrov[/i]

2002 Korea Junior Math Olympiad, 8

On a long metal stick, $1000$ red marbles are embedded in the stick so the stick is equally partitioned into $1001$ parts by them. $1001$ blue marbles are embedded in the stick too, so the stick is equally partitioned into $1002$ parts by them. If you cut the metal stick equally into $2003$ smaller parts, how many of the smaller parts would contain at least one embedded marble?

1984 Bundeswettbewerb Mathematik, 1

The natural numbers $n$ and $z$ are relatively prime and greater than $1$. For $k = 0, 1, 2,..., n - 1$ let $s(k) = 1 + z + z^2 + ...+ z^k.$ Prove that: a) At least one of the numbers $s(k)$ is divisible by $n$. b) If $n$ and $z - 1$ are also coprime, then already one of the numbers $s(k)$ with $k = 0,1, 2,..., n- 2$ is divisible by $n$.

2022 Abelkonkurransen Finale, 1b

Find all primes $p$ and positive integers $n$ satisfying \[n \cdot 5^{n-n/p} = p! (p^2+1) + n.\]

1989 Irish Math Olympiad, 4

Note that $12^2=144$ ends in two $4$s and $38^2=1444$ end in three $4$s. Determine the length of the longest string of equal nonzero digits in which the square of an integer can end.

2023 Junior Balkan Team Selection Tests - Moldova, 3

Prove that the number $A=2024^{n+1}-2023n-2024$ has at least $15$ different positive divisors for every nonnegative integer $ n $.

2005 Poland - Second Round, 1

Find all positive integers $n$ for which $n^n+1$ and $(2n)^{2n}+1$ are prime numbers.

1965 Czech and Slovak Olympiad III A, 1

Show that the number $5^{2n+1}2^{n+2}+3^{n+2}2^{2n+1}$ is divisible by $19$ for every non-negative integer $n$.

2015 Nordic, 2

Find the primes ${p, q, r}$, given that one of the numbers ${pqr}$ and ${p + q + r}$ is ${101}$ times the other.

2002 Croatia National Olympiad, Problem 4

Find all natural numbers $n$ for which the equation $\frac1x+\frac1y=\frac1n$ has exactly five solutions $(x,y)$ in the set of natural numbers.

2015 British Mathematical Olympiad Round 1, 6

A positive integer is called [i]charming[/i] if it is equal to $2$ or is of the form $3^{i}5^{j}$ where $i$ and $j$ are non-negative integers. Prove that every positive integer can be written as a sum of different charming numbers.

2013 Romania Team Selection Test, 2

Let $n$ be an integer larger than $1$ and let $S$ be the set of $n$-element subsets of the set $\{1,2,\ldots,2n\}$. Determine \[\max_{A\in S}\left (\min_{x,y\in A, x \neq y} [x,y]\right )\] where $[x,y]$ is the least common multiple of the integers $x$, $y$.

2018 Purple Comet Problems, 14

Find the number of ordered quadruples of positive integers $(a,b,c, d)$ such that $ab + cd = 10$.

2011 Romania Team Selection Test, 2

Given a prime number $p$ congruent to $1$ modulo $5$ such that $2p+1$ is also prime, show that there exists a matrix of $0$s and $1$s containing exactly $4p$ (respectively, $4p+2$) $1$s no sub-matrix of which contains exactly $2p$ (respectively, $2p+1$) $1$s.