This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1991 Cono Sur Olympiad, 2

Two people, $A$ and $B$, play the following game: $A$ start choosing a positive integrer number and then, each player in it's turn, say a number due to the following rule: If the last number said was odd, the player add $7$ to this number; If the last number said was even, the player divide it by $2$. The winner is the player that repeats the first number said. Find all numbers that $A$ can choose in order to win. Justify your answer.

Mid-Michigan MO, Grades 7-9, 2023

[b]p1.[/b] Three camps are located in the vertices of an equilateral triangle. The roads connecting camps are along the sides of the triangle. Captain America is inside the triangle and he needs to know the distances between camps. Being able to see the roads he has found that the sum of the shortest distances from his location to the roads is 50 miles. Can you help Captain America to evaluate the distances between the camps? [b]p2.[/b] $N$ regions are located in the plane, every pair of them have a non-empty overlap. Each region is a connected set, that means every two points inside the region can be connected by a curve all points of which belong to the region. Iron Man has one charge remaining to make a laser shot. Is it possible for him to make the shot that goes through all $N$ regions? [b]p3.[/b] Money in Wonderland comes in $\$5$ and $\$7$ bills. (a) What is the smallest amount of money you need to buy a slice of pizza that costs $\$1$ and get back your change in full? (The pizza man has plenty of $\$5$ and $\$7$ bills.) For example, having $\$7$ won't do since the pizza man can only give you $\$5$ back. (b) Vending machines in Wonderland accept only exact payment (do not give back change). List all positive integer numbers which CANNOT be used as prices in such vending machines. (That is, find the sums of money that cannot be paid by exact change.) [b]p4.[/b] (a) Put $5$ points on the plane so that each $3$ of them are vertices of an isosceles triangle (i.e., a triangle with two equal sides), and no three points lie on the same line. (b) Do the same with $6$ points. [b]p5.[/b] Numbers $1,2,3,…,100$ are randomly divided in two groups $50$ numbers in each. In the first group the numbers are written in increasing order and denoted $a_1,a_2, ..., a_{50}$. In the second group the numberss are written in decreasing order and denoted $b_1,b_2, ..., b_{50}$. Thus $a_1<a_2<...<a_{50}$ and $ b_1>b_2>...>b_{50}$. Evaluate $|a_1-b_1|+|a_2-b_2|+...+|a_{50}-b_{50}|$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Kyiv Mathematical Festival, 5

Is it possible to fill the cells of a table of size $2019\times2019$ with pairwise distinct positive integers in such a way that in each rectangle of size $1\times2$ or $2\times1$ the larger number is divisible by the smaller one, and the ratio of the largest number in the table to the smallest one is at most $2019?$

2001 Brazil National Olympiad, 2

Given $a_0 > 1$, the sequence $a_0, a_1, a_2, ...$ is such that for all $k > 0$, $a_k$ is the smallest integer greater than $a_{k-1}$ which is relatively prime to all the earlier terms in the sequence. Find all $a_0$ for which all terms of the sequence are primes or prime powers.

PEN O Problems, 7

Show that for each $n \ge 2$, there is a set $S$ of $n$ integers such that $(a-b)^2$ divides $ab$ for every distinct $a, b\in S$.

2022 IMO, 3

Let $k$ be a positive integer and let $S$ be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and reflection) to place the elements of $S$ around the circle such that the product of any two neighbors is of the form $x^2+x+k$ for some positive integer $x$.

2025 Nepal National Olympiad, 4

Find all pairs of positive integers \( n \) and \( x \) such that \[ 1^n + 2^n + 3^n + \cdots + n^n = x! \] [i](Petko Lazarov, Bulgaria)[/i]

2021 Miklós Schweitzer, 1

Let $n, m \in \mathbb{N}$; $a_1,\ldots, a_m \in \mathbb{Z}^n$. Show that nonnegative integer linear combinations of these vectors give exactly the whole $\mathbb{Z}^n$ lattice, if $m \ge n$ and the following two statements are satisfied: [list] [*] The vectors do not fall into the half-space of $\mathbb{R}^n$ containing the origin (i.e. they do not fall on the same side of an $n-1$ dimensional subspace), [*] the largest common divisor (not pairwise, but together) of $n \times n$ minor determinants of the matrix $(a_1,\ldots, a_m)$ (which is of size $m \times n$ and the $i$-th column is $a_i$ as a column vector) is $1$. [/list]

2024 Junior Balkan MO, 3

Find all triples of positive integers $(x, y, z)$ that satisfy the equation $$2020^x + 2^y = 2024^z.$$ [i]Proposed by Ognjen Tešić, Serbia[/i]

Kvant 2022, M2714

Let $f{}$ and $g{}$ be polynomials with integers coefficients. The leading coefficient of $g{}$ is equal to 1. It is known that for infinitely many natural numbers $n{}$ the number $f(n)$ is divisible by $g(n)$ . Prove that $f(n)$ is divisible by $g(n)$ for all positive integers $n{}$ such that $g(n)\neq 0$. [i]From the folklore[/i]

2015 IFYM, Sozopol, 3

Solve in natural numbers: $$x^3-y^3=xy+61$$

2023 ELMO Shortlist, N5

An ordered pair \((k,n)\) of positive integers is [i]good[/i] if there exists an ordered quadruple \((a,b,c,d)\) of positive integers such that \(a^3+b^k=c^3+d^k\) and \(abcd=n\). Prove that there exist infinitely many positive integers \(n\) such that \((2022,n)\) is not good but \((2023,n)\) is good. [i]Proposed by Luke Robitaille[/i]

2023-IMOC, N1

Find all positive integers $k$ satisfying: there is only a finite number of positive integers $n$, such that the positive integer solution $x$ of $xn+1\mid n^2+kn+1$ is not unique.

2018 Germany Team Selection Test, 3

Determine all integers $ n\geq 2$ having the following property: for any integers $a_1,a_2,\ldots, a_n$ whose sum is not divisible by $n$, there exists an index $1 \leq i \leq n$ such that none of the numbers $$a_i,a_i+a_{i+1},\ldots,a_i+a_{i+1}+\ldots+a_{i+n-1}$$ is divisible by $n$. Here, we let $a_i=a_{i-n}$ when $i >n$. [i]Proposed by Warut Suksompong, Thailand[/i]

2005 AMC 12/AHSME, 18

Call a number "prime-looking" if it is composite but not divisible by 2, 3, or 5. The three smallest prime-looking numbers are 49, 77, and 91. There are 168 prime numbers less than 1000. How many prime-looking numbers are there less than 1000? $ \textbf{(A)}\ 100 \qquad \textbf{(B)}\ 102 \qquad \textbf{(C)}\ 104 \qquad \textbf{(D)}\ 106 \qquad \textbf{(E)}\ 108$

2019 Belarusian National Olympiad, 10.7

The numbers $S_1=2^2, S_2=2^4,\ldots, S_n=2^{2n}$ are given. A rectangle $OABC$ is constructed on the Cartesian plane according to these numbers. For this, starting from the point $O$ the points $A_1,A_2,\ldots,A_n$ are consistently marked along the axis $Ox$, and the points $C_1,C_2,\ldots,C_n$ are consistently marked along the axis $Oy$ in such a way that for all $k$ from $1$ to $n$ the lengths of the segments $A_{k-1}A_k=x_k$ and $C_{k-1}C_k=y_k$ are positive integers (let $A_0=C_0=O$, $A_n=A$, and $C_n=C$) and $x_k\cdot y_k=S_k$. [b]a)[/b] Find the maximal possible value of the area of the rctangle $OABC$ and all pairs of sets $(x_1,x_2,\ldots,x_k)$ and $(y_1,y_2,\ldots,y_k)$ at which this maximal area is achieved. [b]b)[/b] Find the minimal possible value of the area of the rctangle $OABC$ and all pairs of sets $(x_1,x_2,\ldots,x_k)$ and $(y_1,y_2,\ldots,y_k)$ at which this minimal area is achieved. [i](E. Manzhulina, B. Rublyov)[/i]

1984 IMO Shortlist, 11

Let $n$ be a positive integer and $a_1, a_2, \dots , a_{2n}$ mutually distinct integers. Find all integers $x$ satisfying \[(x - a_1) \cdot (x - a_2) \cdots (x - a_{2n}) = (-1)^n(n!)^2.\]

1974 IMO Longlists, 30

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2009 Romanian Master of Mathematics, 2

A set $ S$ of points in space satisfies the property that all pairwise distances between points in $ S$ are distinct. Given that all points in $ S$ have integer coordinates $ (x,y,z)$ where $ 1 \leq x,y, z \leq n,$ show that the number of points in $ S$ is less than $ \min \Big((n \plus{} 2)\sqrt {\frac {n}{3}}, n \sqrt {6}\Big).$ [i]Dan Schwarz, Romania[/i]

2010 Thailand Mathematical Olympiad, 1

Show that, for every positive integer $x$, there is a positive integer $y\in \{2, 5, 13\}$ such that $xy - 1$ is not a perfect square.

Kettering MO, 2019

[b]p1.[/b] At $8$ AM Black Widow and Hawkeye began to move towards each other from two cities. They were planning to meet at the midpoint between two cities, but because Black Widow was driving $100$ mi/h faster than Hawkeye, they met at the point that is located $120$ miles from the midpoint. When they met Black Widow said ”If I knew that you drive so slow I would have started one hour later, and then we would have met exactly at the midpoint”. Find the distance between cities. [b]p2.[/b] Solve the inequality: $\frac{x-1}{x-2} \le \frac{x-2}{x-1}$. [b]p3.[/b] Solve the equation: $(x - y - z)^2 + (2x - 3y + 2z + 4)^2 + (x + y + z - 8)^2 = 0$. [b]p4.[/b] Three camps are located in the vertices of an equilateral triangle. The roads connecting camps are along the sides of the triangle. Captain America is inside the triangle and he needs to know the distances between camps. Being able to see the roads he has found that the sum of the shortest distances from his location to the roads is $50$ miles. Can you help Captain America to evaluate the distances between the camps. [b]p5.[/b] $N$ regions are located in the plane, every pair of them have a nonempty overlap. Each region is a connected set, that means every two points inside the region can be connected by a curve all points of which belong to the region. Iron Man has one charge remaining to make a laser shot. Is it possible for him to make the shot that goes through all $N$ regions? [b]p6.[/b] Numbers $1, 2, . . . , 100$ are randomly divided in two groups $50$ numbers in each. In the first group the numbers are written in increasing order and denoted $a_1$, $a_2$, $...$ , $a_{50}$. In the second group the numbers are written in decreasing order and denoted $b_1$, $b_2$, $...$, $b_{50}$. Thus, $a_1 < a_2 < ... < a_{50}$ and $b_1 > b2_ > ... > b_{50}$. Evaluate $|a_1 - b_1| + |a_2 - b_2| + ... + |a_{50} - b_{50}|$. PS. You should use hide for answers.

2007 Germany Team Selection Test, 1

We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by \[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right), \] where $\lfloor x\rfloor$ denotes the integer part of $x$. [b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often. [b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often. [i]Proposed by Johan Meyer, South Africa[/i]

2020 BMT Fall, 8

By default, iPhone passcodes consist of four base-$10$ digits. However, Freya decided to be unconventional and use hexadecimal (base-$16$) digits instead of base-$10$ digits! (Recall that $10_{16} = 16_{10}$.) She sets her passcode such that exactly two of the hexadecimal digits are prime. How many possible passcodes could she have set?

2013 Indonesia Juniors, day 2

p1. Is there any natural number n such that $n^2 + 5n + 1$ is divisible by $49$ ? Explain. p2. It is known that the parabola $y = ax^2 + bx + c$ passes through the points $(-3,4)$ and $(3,16)$, and does not cut the $x$-axis. Find all possible abscissa values ​​for the vertex point of the parabola. p3. It is known that $T.ABC$ is a regular triangular pyramid with side lengths of $2$ cm. The points $P, Q, R$, and $S$ are the centroids of triangles $ABC$, $TAB$, $TBC$ and $TCA$, respectively . Determine the volume of the triangular pyramid $P.QRS$ . p4. At an event invited $13$ special guests consisting of $ 8$ people men and $5$ women. Especially for all those special guests provided $13$ seats in a special row. If it is not expected two women sitting next to each other, determine the number of sitting positions possible for all those special guests. p5. A table of size $n$ rows and $n$ columns will be filled with numbers $ 1$ or $-1$ so that the product of all the numbers in each row and the product of all the numbers in each column is $-1$. How many different ways to fill the table?

2006 China Team Selection Test, 3

Given positive integers $m$ and $n$ so there is a chessboard with $mn$ $1 \times 1$ grids. Colour the grids into red and blue (Grids that have a common side are not the same colour and the grid in the left corner at the bottom is red). Now the diagnol that goes from the left corner at the bottom to the top right corner is coloured into red and blue segments (Every segment has the same colour with the grid that contains it). Find the sum of the length of all the red segments.