Found problems: 15460
2022 BMT, 2
Compute the number of positive integer divisors of $100000$ which do not contain the digit $0.$
2005 Flanders Math Olympiad, 3
Prove that $2005^2$ can be written in at least $4$ ways as the sum of 2 perfect (non-zero) squares.
2012 ELMO Shortlist, 2
For positive rational $x$, if $x$ is written in the form $p/q$ with $p, q$ positive relatively prime integers, define $f(x)=p+q$. For example, $f(1)=2$.
a) Prove that if $f(x)=f(mx/n)$ for rational $x$ and positive integers $m, n$, then $f(x)$ divides $|m-n|$.
b) Let $n$ be a positive integer. If all $x$ which satisfy $f(x)=f(2^nx)$ also satisfy $f(x)=2^n-1$, find all possible values of $n$.
[i]Anderson Wang.[/i]
2012 Czech-Polish-Slovak Junior Match, 2
Determine all three primes $(a, b, c)$ that satisfied the equality $a^2+ab+b^2=c^2+3$.
2015 Latvia Baltic Way TST, 15
Let $w (n)$ denote the number of different prime numbers by which $n$ is divisible. Prove that there are infinitely many natural numbers $n$ such that $w(n) < w(n + 1) < w(n + 2)$.
2018 Israel National Olympiad, 5
The sequence $a_n$ is defined for any $n\geq 10$ by the following inductive rule:
[list]
[*] $a_{10}=5778$
[*] If $a_n=0$ then $a_{n+1}=0$.
[*] If $a_n\neq0$ then $a_{n+1}$ is the number whose base-$(n+1)$ representation equals the base $n$ representation of the number $a_n -1$.
[/list]
For example,
$a_{11}=5\cdot11^3+7\cdot11^2+7\cdot11^1+7\cdot11^0=7586$
$a_{12}=5\cdot12^3+7\cdot12^2+7\cdot12^1+6\cdot12^0=9738$
[list=a]
[*] Does there exist $n\geq10$ for which $a_n=0$?
[*] Is $a_{1,000,000}=0$?
[*] Is $a_{100^{100^{100}}}=0$?
[/list]
2010 Iran MO (3rd Round), 3
If $p$ is a prime number, what is the product of elements like $g$ such that $1\le g\le p^2$ and $g$ is a primitive root modulo $p$ but it's not a primitive root modulo $p^2$, modulo $p^2$?($\frac{100}{6}$ points)
2014 ELMO Shortlist, 1
Does there exist a strictly increasing infinite sequence of perfect squares $a_1, a_2, a_3, ...$ such that for all $k\in \mathbb{Z}^+$ we have that $13^k | a_k+1$?
[i]Proposed by Jesse Zhang[/i]
2023 LMT Spring, 1
Given the following system of equations:
$$\begin{cases} R I +G +SP = 50 \\ R I +T + M = 63 \\ G +T +SP = 25 \\ SP + M = 13 \\ M +R I = 48 \\ N = 1 \end{cases}$$
Find the value of L that makes $LMT +SPR I NG = 2023$ true.
2021 Puerto Rico Team Selection Test, 4
How many numbers $\overline{abcd}$ with different digits satisfy the following property:
if we replace the largest digit with the digit $1$ results in a multiple of $30$?
2022 Cono Sur, 5
An integer $n>1$ , whose positive divisors are $1=d_1<d_2< \cdots <d_k=n$, is called $\textit{southern}$ if all the numbers $d_2-d_1, d_3- d_2 , \cdots, d_k-d_{k-1}$ are divisors of $n$.
a) Find a positive integer that is $\textit{not southern}$ and has exactly $2022$ positive divisors that are $\textit{southern}$.
b) Show that there are infinitely many positive integers that are $\textit{not southern}$ and have exactly $2022$ positive divisors that are $\textit{southern}$.
1988 Spain Mathematical Olympiad, 1
A sequence of integers $(x_n)_{n=1}^{\infty}$ satisfies $x_1 = 1$ and $x_n < x_{n+1} \le 2n$ for all $n$.
Show that for every positive integer $k$ there exist indices $r, s$ such that $x_r-x_s = k$.
2021 XVII International Zhautykov Olympiad, #1
Prove that there exists a positive integer $n$, such that the remainder of $3^n$ when divided by $2^n$ is greater than $10^{2021} $.
2017 India Regional Mathematical Olympiad, 2
Show that the equation \(a^3+(a+1)^3+\ldots+(a+6)^3=b^4+(b+1)^4\) has no solutions in integers \(a,b\).
2022 Princeton University Math Competition, 14
Let $\vartriangle ABC$ be a triangle. Let $Q$ be a point in the interior of $\vartriangle ABC$, and let $X, Y,Z$ denote the feet of the altitudes from $Q$ to sides $BC$, $CA$, $AB$, respectively. Suppose that $BC = 15$, $\angle ABC = 60^o$, $BZ = 8$, $ZQ = 6$, and $\angle QCA = 30^o$. Let line $QX$ intersect the circumcircle of $\vartriangle XY Z$ at the point $W\ne X$. If the ratio $\frac{ WY}{WZ}$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$, find $p + q$.
2022 Thailand TST, 1
Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?
2001 Tournament Of Towns, 2
In three piles there are $51, 49$, and $5$ stones, respectively. You can combine any two piles into one pile or divide a pile consisting of an even number of stones into two equal piles. Is it possible to get $105$ piles with one stone in each?
MOAA Gunga Bowls, 2018
[u]Set 7[/u]
[b]p19.[/b] Let circles $\omega_1$ and $\omega_2$, with centers $O_1$ and $O_2$, respectively, intersect at $X$ and $Y$ . A lies on $\omega_1$ and $B$ lies on $\omega_2$ such that $AO_1$ and $BO_2$ are both parallel to $XY$, and $A$ and $B$ lie on the same side of $O_1O_2$. If $XY = 60$, $\angle XAY = 45^o$, and $\angle XBY = 30^o$, then the length of $AB$ can be expressed in the form $\sqrt{a - b\sqrt2 + c\sqrt3}$, where $a, b, c$ are positive integers. Determine $a + b + c$.
[b]p20.[/b] If $x$ is a positive real number such that $x^{x^2}= 2^{80}$, find the largest integer not greater than $x^3$.
[b]p21.[/b] Justin has a bag containing $750$ balls, each colored red or blue. Sneaky Sam takes out a random number of balls and replaces them all with green balls. Sam notices that of the balls left in the bag, there are $15$ more red balls than blue balls. Justin then takes out $500$ of the balls chosen randomly. If $E$ is the expected number of green balls that Justin takes out, determine the greatest integer less than or equal to $E$.
[u]Set 8[/u]
These three problems are interdependent; each problem statement in this set will use the answers to the other two problems in this set. As such, let the positive integers $A, B, C$ be the answers to problems $22$, $23$, and $24$, respectively, for this set.
[b]p22.[/b] Let $WXYZ$ be a rectangle with $WX =\sqrt{5B}$ and $XY =\sqrt{5C}$. Let the midpoint of $XY$ be $M$ and the midpoint of $YZ$ be $N$. If $XN$ and $W Y$ intersect at $P$, determine the area of $MPNY$ .
[b]p23.[/b] Positive integers $x, y, z$ satisfy $$xy \equiv A \,\, (mod 5)$$
$$yz \equiv 2A + C\,\, (mod 7)$$
$$zx \equiv C + 3 \,\, (mod 9).$$ (Here, writing $a \equiv b \,\, (mod m)$ is equivalent to writing $m | a - b$.)
Given that $3 \nmid x$, $3 \nmid z$, and $9 | y$, find the minimum possible value of the product $xyz$.
[b]p24.[/b] Suppose $x$ and $y$ are real numbers such that $$x + y = A$$
$$xy =\frac{1}{36}B^2.$$ Determine $|x - y|$.
[u]Set 9[/u]
[b]p25. [/b]The integer $2017$ is a prime which can be uniquely represented as the sum of the squares of two positive integers: $$9^2 + 44^2 = 2017.$$ If $N = 2017 \cdot 128$ can be uniquely represented as the sum of the squares of two positive integers $a^2 +b^2$, determine $a + b$.
[b]p26.[/b] Chef Celia is planning to unveil her newest creation: a whole-wheat square pyramid filled with maple syrup. She will use a square flatbread with a one meter diagonal and cut out each of the five polygonal faces of the pyramid individually. If each of the triangular faces of the pyramid are to be equilateral triangles, the largest volume of syrup, in cubic meters, that Celia can enclose in her pyramid can be expressed as $\frac{a-\sqrt{b}}{c}$ where $a, b$ and $c$ are the smallest possible possible positive integers. What is $a + b + c$?
[b]p27.[/b] In the Cartesian plane, let $\omega$ be the circle centered at $(24, 7)$ with radius $6$. Points $P, Q$, and $R$ are chosen in the plane such that $P$ lies on $\omega$, $Q$ lies on the line $y = x$, and $R$ lies on the $x$-axis. The minimum possible value of $PQ+QR+RP$ can be expressed in the form $\sqrt{m}$ for some integer $m$. Find m.
[u]Set 10[/u]
[i]Deja vu?[/i]
[b]p28. [/b] Let $ABC$ be a triangle with incircle $\omega$. Let $\omega$ intersect sides $BC$, $CA$, $AB$ at $D, E, F$, respectively. Suppose $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ is $K$ and the area of $DEF$ is $\frac{m}{n}\cdot K$, where $m$ and $n$ are relatively prime positive integers, then compute $m + n$.
[b]p29.[/b] Sebastian is playing the game Split! again, but this time in a three dimensional coordinate system. He begins the game with one token at $(0, 0, 0)$. For each move, he is allowed to select a token on any point $(x, y, z)$ and take it off, replacing it with three tokens, one at $(x + 1, y, z)$, one at $(x, y + 1, z)$, and one at $(x, y, z + 1)$ At the end of the game, for a token on $(a, b, c)$, it is assigned a score $\frac{1}{2^{a+b+c}}$ . These scores are summed for his total score. If the highest total score Sebastian can get in $100$ moves is $m/n$, then determine $m + n$.
[b]p30.[/b] Determine the number of positive $6$ digit integers that satisfy the following properties:
$\bullet$ All six of their digits are $1, 5, 7$, or $8$,
$\bullet$ The sum of all the digits is a multiple of $5$.
[u]Set 11[/u]
[b]p31.[/b] The triangular numbers are defined as $T_n =\frac{n(n+1)}{2}$. We also define $S_n =\frac{n(n+2)}{3}$. If the sum $$\sum_{i=16}^{32} \left(\frac{1}{T_i}+\frac{1}{S_i}\right)= \left(\frac{1}{T_{16}}+\frac{1}{S_{16}}\right)+\left(\frac{1}{T_{17}}+\frac{1}{S_{17}}\right)+...+\left(\frac{1}{T_{32}}+\frac{1}{S_{32}}\right)$$ can be written in the form $a/b$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$, then find $a + b$.
[b]p32.[/b] Farmer Will is considering where to build his house in the Cartesian coordinate plane. He wants to build his house on the line $y = x$, but he also has to minimize his travel time for his daily trip to his barnhouse at $(24, 15)$ and back. From his house, he must first travel to the river at $y = 2$ to fetch water for his animals. Then, he heads for his barnhouse, and promptly leaves for the long strip mall at the line $y =\sqrt3 x$ for groceries, before heading home. If he decides to build his house at $(x_0, y_0)$ such that the distance he must travel is minimized, $x_0$ can be written in the form $\frac{a\sqrt{b}-c}{d}$ , where $a, b, c, d$ are positive integers, $b$ is not divisible by the square of a prime, and $gcd(a, c, d) = 1$. Compute $a+b+c+d$.
[b]p33.[/b] Determine the greatest positive integer $n$ such that the following two conditions hold:
$\bullet$ $n^2$ is the difference of consecutive perfect cubes;
$\bullet$ $2n + 287$ is the square of an integer.
[u]Set 12[/u]
The answers to these problems are nonnegative integers that may exceed $1000000$. You will be awarded points as described in the problems.
[b]p34.[/b] The “Collatz sequence” of a positive integer n is the longest sequence of distinct integers $(x_i)_{i\ge 0}$ with $x_0 = n$ and $$x_{n+1} =\begin{cases} \frac{x_n}{2} & if \,\, x_n \,\, is \,\, even \\ 3x_n + 1 & if \,\, x_n \,\, is \,\, odd \end{cases}.$$ It is conjectured that all Collatz sequences have a finite number of elements, terminating at $1$. This has been confirmed via computer program for all numbers up to $2^{64}$. There is a unique positive integer $n < 10^9$ such that its Collatz sequence is longer than the Collatz sequence of any other positive integer less than $10^9$. What is this integer $n$?
An estimate of $e$ gives $\max\{\lfloor 32 - \frac{11}{3}\log_{10}(|n - e| + 1)\rfloor, 0\}$ points.
[b]p35.[/b] We define a graph $G$ as a set $V (G)$ of vertices and a set $E(G)$ of distinct edges connecting those vertices. A graph $H$ is a subgraph of $G$ if the vertex set $V (H)$ is a subset of $V (G)$ and the edge set $E(H)$ is a subset of $E(G)$. Let $ex(k, H)$ denote the maximum number of edges in a graph with $k$ vertices without a subgraph of $H$. If $K_i$ denotes a complete graph on $i$ vertices, that is, a graph with $i$ vertices and all ${i \choose 2}$ edges between them present, determine $$n =\sum_{i=2}^{2018} ex(2018, K_i).$$
An estimate of $e$ gives $\max\{\lfloor 32 - 3\log_{10}(|n - e| + 1)\rfloor, 0\}$ points.
[b]p36.[/b] Write down an integer between $1$ and $100$, inclusive. This number will be denoted as $n_i$ , where your Team ID is $i$. Let $S$ be the set of Team ID’s for all teams that submitted an answer to this problem. For every ordered triple of distinct Team ID’s $(a, b, c)$ such that a, b, c ∈ S, if all roots of the polynomial $x^3 + n_ax^2 + n_bx + n_c$ are real, then the teams with ID’s $a, b, c$ will each receive one virtual banana.
If you receive $v_b$ virtual bananas in total and $|S| \ge 3$ teams submit an answer to this problem, you will be awarded $$\left\lfloor \frac{32v_b}{3(|S| - 1)(|S| - 2)}\right\rfloor$$ points for this problem. If $|S| \le 2$, the team(s) that submitted an answer to this problem will receive $32$ points for this problem.
PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777264p24369138]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1981 USAMO, 1
The measure of a given angle is $\frac{180^{\circ}}{n}$ where $n$ is a positive integer not divisible by $3$. Prove that the angle can be trisected by Euclidean means (straightedge and compasses).
2006 Kyiv Mathematical Festival, 5
See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url]
Let $a, b, c, d$ be positive integers and $p$ be prime number such that $a^2+b^2=p$ and $c^2+d^2$ is divisible by $p.$ Prove that there exist positive integers $e$ and $f$ such that $e^2+f^2=\frac{c^2+d^2}{p}.$
2023 Korea National Olympiad, 3
For a given positive integer $n(\ge 2)$, find maximum positive integer $A$ such that there exists $P \in \mathbb{Z}[x]$ with degree $n$ that satisfies the following two conditions.
[list]
[*] For any $1 \le k \le A$, it satisfies that $A \mid P(k)$, and
[*] $P(0)= 0$ and the coefficient of the first term of $P$ is $1$, which means that $P(x)$ is in the following form where $c_2, c_3, \cdots, c_n$ are all integers and $c_n \neq 0$.
$$P(x) = c_nx^n + c_{n-1}x^{n-1}+\dots+c_2x^2+x$$
[/list]
Mid-Michigan MO, Grades 7-9, 2013
[b]p1.[/b] A straight line is painted in two colors. Prove that there are three points of the same color such that one of them is located exactly at the midpoint of the interval bounded by the other two.
[b]p2.[/b] Find all positive integral solutions $x, y$ of the equation $xy = x + y + 3$.
[b]p3.[/b] Can one cut a square into isosceles triangles with angle $80^o$ between equal sides?
[b]p4.[/b] $20$ children are grouped into $10$ pairs: one boy and one girl in each pair. In each pair the boy is taller than the girl. Later they are divided into pairs in a different way. May it happen now that
(a) in all pairs the girl is taller than the boy;
(b) in $9$ pairs out of $10$ the girl is taller than the boy?
[b]p5.[/b] Mr Mouse got to the cellar where he noticed three heads of cheese weighing $50$ grams, $80$ grams, and $120$ grams. Mr. Mouse is allowed to cut simultaneously $10$ grams from any two of the heads and eat them. He can repeat this procedure as many times as he wants. Can he make the weights of all three pieces equal?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1985 Federal Competition For Advanced Students, P2, 5
A sequence $ (a_n)$ of positive integers satisfies: $ a_n\equal{}\sqrt{\frac{a_{n\minus{}1}^2\plus{}a_{n\plus{}1}^2}{2}}$ for all $ n \ge 1$. Prove that this sequence is constant.
2017 China Western Mathematical Olympiad, 7
Let $n=2^{\alpha} \cdot q$ be a positive integer, where $\alpha$ is a nonnegative integer and $q$ is an odd number. Show that for any positive integer $m$, the number of integer solutions to the equation $x_1^2+x_2^2+\cdots +x_n^2=m$ is divisible by $2^{\alpha +1}$.
2011 IFYM, Sozopol, 7
solve $x^2+31=y^3$ in integers