Found problems: 15460
2017 India IMO Training Camp, 3
Prove that for any positive integers $a$ and $b$ we have $$a+(-1)^b \sum^a_{m=0} (-1)^{\lfloor{\frac{bm}{a}\rfloor}} \equiv b+(-1)^a \sum^b_{n=0} (-1)^{\lfloor{\frac{an}{b}\rfloor}} \pmod{4}.$$
2014 Saint Petersburg Mathematical Olympiad, 4
We call a natural number venerable if the sum of all its divisors, including $1$, but not including the number itself, is $1$ less than this number. Find all the venerable numbers, some exact degree of which is also venerable.
2019 BMT Spring, 14
On a $24$ hour clock, there are two times after $01:00$ for which the time expressed in the form $hh:mm$ and in minutes are both perfect squares. One of these times is $01:21$, since $121$ and $60+21 = 81$ are both perfect squares. Find the other time, expressed in the form $hh:mm$.
2002 Manhattan Mathematical Olympiad, 2
Let us consider the sequence $1,2, 3, \ldots , 2002$. Somebody choses $1002$ numbers from the sequence. Prove that there are two of the chosen numbers which are relatively prime (i.e. do not have any common divisors except $1$).
2008 Denmark MO - Mohr Contest, 3
The numbers from $1$ to $500$ are written on the board. Two players $A$ and $B$ erase alternately one number at a time, and $A$ deletes the first number. If the sum of the last two number on the board is divisible by $3$, $B$ wins, otherwise $A$ wins. Which player can lay out a strategy that ensures this player's victory?
2020 Malaysia IMONST 2, 3
Find all possible integer values of $n$ such that $12n^2 + 12n + 11$ is a $4$-digit number with equal digits.
2017 IMO, 6
An ordered pair $(x, y)$ of integers is a primitive point if the greatest common divisor of $x$ and $y$ is $1$. Given a finite set $S$ of primitive points, prove that there exist a positive integer $n$ and integers $a_0, a_1, \ldots , a_n$ such that, for each $(x, y)$ in $S$, we have:
$$a_0x^n + a_1x^{n-1} y + a_2x^{n-2}y^2 + \cdots + a_{n-1}xy^{n-1} + a_ny^n = 1.$$
[i]Proposed by John Berman, United States[/i]
2006 Mid-Michigan MO, 5-6
[b]p1.[/b] Find all solutions $a, b, c, d, e, f$ if it is known that they represent distinct digits and satisfy the following:
$\begin{tabular}{ccccc}
& a & b & c & a \\
+ & & d & d & e \\
& & & d & e \\
\hline
d & f & f & d & d \\
\end{tabular}$
[b]p2.[/b] Snowhite wrote on a piece of paper a whole number greater than $1$ and multiplied it by itself. She obtained a number, all digits of which are $1$: $n^2 = 111...111$ Does she know how to multiply?
[b]p3.[/b] Two players play the following game on an $8\times 8$ chessboard. The first player can put a bishop on an arbitrary square. Then the second player can put another bishop on a free square that is not controlled by the first bishop. Then the first player can put a new bishop on a free square that is not controlled by the bishops on the board. Then the second player can do the same, etc. A player who cannot put a new bishop on the board loses the game. Who has a winning strategy?
[b]p4.[/b] Four girls Marry, Jill, Ann and Susan participated in the concert. They sang songs. Every song was performed by three girls. Mary sang $8$ songs, more then anybody. Susan sang $5$ songs less then all other girls. How many songs were performed at the concert?
[b]p5.[/b] Pinocchio has a $10\times 10$ table of numbers. He took the sums of the numbers in each row and each such sum was positive. Then he took the sum of the numbers in each columns and each such sum was negative. Can you trust Pinocchio's calculations?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2025 Bulgarian Winter Tournament, 12.3
Determine all functions $f: \mathbb{Z}_{\geq 2025} \to \mathbb{Z}_{>0}$ such that $mn+1$ divides $f(m)f(n) + 1$ for any integers $m,n \geq 2025$ and there exists a polynomial $P$ with integer coefficients, such that $f(n) \leq P(n)$ for all $n\geq 2025$.
2006 Iran MO (3rd Round), 3
For $A\subset\mathbb Z$ and $a,b\in\mathbb Z$. We define $aA+b: =\{ax+b|x\in A\}$. If $a\neq0$ then we calll $aA+b$ and $A$ to similar sets. In this question the Cantor set $C$ is the number of non-negative integers that in their base-3 representation there is no $1$ digit. You see \[C=(3C)\dot\cup(3C+2)\ \ \ \ \ \ (1)\] (i.e. $C$ is partitioned to sets $3C$ and $3C+2$). We give another example $C=(3C)\dot\cup(9C+6)\dot\cup(3C+2)$.
A representation of $C$ is a partition of $C$ to some similiar sets. i.e. \[C=\bigcup_{i=1}^{n}C_{i}\ \ \ \ \ \ (2)\] and $C_{i}=a_{i}C+b_{i}$ are similar to $C$.
We call a representation of $C$ a primitive representation iff union of some of $C_{i}$ is not a set similar and not equal to $C$.
Consider a primitive representation of Cantor set. Prove that
a) $a_{i}>1$.
b) $a_{i}$ are powers of 3.
c) $a_{i}>b_{i}$
d) (1) is the only primitive representation of $C$.
VMEO III 2006 Shortlist, N14
For any natural number $n = \overline{a_i...a_2a_1}$, consider the number $$T(n) =10 \sum_{i \,\, even} a_i+\sum_{i \,\, odd} a_i.$$ Let's find the smallest positive integer $A$ such that is sum of the natural numbers $n_1,n_2,...,n_{148}$ as well as of $m_1,m_2,...,m_{149}$ and matches the pattern:
$A=n_1+n_2+...+n_{148}=m_1+m_2+...+m_{149}$
$T(n_1)=T(n_2)=...=T(n_{148})$
$T(m_1)=T(m_2)=...=T(m_{148})$
Kettering MO, 2001
[b]p1.[/b] Find the largest k such that the equation $x^2 - 2x + k = 0$ has at least one real root.
[b]p2.[/b] Indiana Jones needs to cross a flimsy rope bridge over a mile long gorge. It is so dark that it is impossible to cross the bridge without a flashlight. Furthermore, the bridge is so weak that it can only support the weight of two people. The party has only one flashlight, which has a weak beam so whenever two people cross, they are constrained to walk together, at the speed of the slower person. Indiana Jones can cross the bridge in $5$ minutes. His girlfriend can cross in $10$ minutes. His father needs $20$ minutes, and his father’s side kick needs $25$ minutes. They need to get everyone across safely in on hour to escape the bay guys. Can they do it?
[b]p3.[/b] There are ten big bags with coins. Nine of them contain fare coins weighing $10$ g. each, and one contains counterfeit coins weighing $9$ g. each. By one weighing on a digital scale find the bag with counterfeit coins.
[b]p4.[/b] Solve the equation: $\sqrt{x^2 + 4x + 4} = x^2 + 5x + 5$.
[b]p5.[/b] (a) In the $x - y$ plane, analytically determine the length of the path $P \to A \to C \to B \to P$ around the circle $(x - 6)^2 + (y - 8)^2 = 25$ from the point $P(12, 16)$ to itself.
[img]https://cdn.artofproblemsolving.com/attachments/f/b/24888b5b478fa6576a54d0424ce3d3c6be2855.png[/img]
(b) Determine coordinates of the points $A$ and $B$.
[b]p6.[/b] (a) Let $ABCD$ be a convex quadrilateral (it means that diagonals are inside the quadrilateral). Prove that
$$Area\,\, (ABCD) \le \frac{|AB| \cdot |AD| + |BC| \cdot |CD|}{2}$$
(b) Let $ABCD$ be an arbitrary quadrilateral (not necessary convex). Prove the same inequality as in part (a).
(c) For an arbitrary quadrilateral $ABCD$ prove that $Area\,\, (ABCD) \le \frac{|AB| \cdot |CD| + |BC| \cdot |AD|}{2}$
PS. You should use hide for answers.
2015 Czech and Slovak Olympiad III A, 6
Integer $n>2$ is given. Find the biggest integer $d$, for which holds, that from any set $S$ consisting of $n$ integers, we can find three different (but not necesarilly disjoint) nonempty subsets, such that sum of elements of each of them is divisible by $d$.
2019 Final Mathematical Cup, 3
Determine every prime numbers $p$ and $q , p \le q$ for which $pq | (5^p - 2^ p )(7^q -2 ^q )$
2012 IMO, 6
Find all positive integers $n$ for which there exist non-negative integers $a_1, a_2, \ldots, a_n$ such that
\[
\frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \cdots + \frac{1}{2^{a_n}} =
\frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \cdots + \frac{n}{3^{a_n}} = 1.
\]
[i]Proposed by Dusan Djukic, Serbia[/i]
1972 Bundeswettbewerb Mathematik, 2
Prove: out of $ 79$ consecutive positive integers, one can find at least one whose sum of digits is divisible by $ 13$. Show that this isn't true for $ 78$ consecutive integers.
2023 Thailand October Camp, 3
If $d$ is a positive integer such that $d \mid 5+2022^{2022}$, show that $d=2x^2+2xy+3y^2$ for some $x, y \in \mathbb{Z}$ iff $d \equiv 3,7 \pmod {20}$.
ABMC Team Rounds, 2018
[u]Round 5[/u]
[b]5.1.[/b] A triangle has lengths such that one side is $12$ less than the sum of the other two sides, the semi-perimeter of the triangle is $21$, and the largest and smallest sides have a difference of $2$. Find the area of this triangle.
[b]5.2.[/b] A rhombus has side length $85$ and diagonals of integer lengths. What is the sum of all possible areas of the rhombus?
[b]5.3.[/b] A drink from YAKSHAY’S SHAKE SHOP is served in a container that consists of a cup, shaped like an upside-down truncated cone, and a semi-spherical lid. The ratio of the radius of the bottom of the cup to the radius of the lid is $\frac23$ , the volume of the combined cup and lid is $296\pi$, and the height of the cup is half of the height of the entire drink container. What is the volume of the liquid in the cup if it is filled up to half of the height of the entire drink container?
[u]Round 6[/u]
[i]Each answer in the next set of three problems is required to solve a different problem within the same set. There is one correct solution to all three problems; however, you will receive points for any correct answer regardless whether other answers are correct.[/i]
[b]6.1.[/b] Let the answer to problem $2$ be $b$. There are b people in a room, each of which is either a truth-teller or a liar. Person $1$ claims “Person $2$ is a liar,” Person $2$ claims “Person $3$ is a liar,” and so on until Person $b$ claims “Person $1$ is a liar.” How many people are truth-tellers?
[b]6.2.[/b] Let the answer to problem $3$ be $c$. What is twice the area of a triangle with coordinates $(0, 0)$, $(c, 3)$ and $(7, c)$ ?
[b]6.3.[/b] Let the answer to problem $ 1$ be $a$. Compute the smaller zero to the polynomial $x^2 - ax + 189$ which has $2$ integer roots.
[u]Round 7[/u]
[b]7.1. [/b]Sir Isaac Neeton is sitting under a kiwi tree when a kiwi falls on his head. He then discovers Neeton’s First Law of Kiwi Motion, which states:
[i]Every minute, either $\left\lfloor \frac{1000}{d} \right\rfloor$ or $\left\lceil \frac{1000}{d} \right\rceil$ kiwis fall on Neeton’s head, where d is Neeton’s distance from the tree in centimeters.[/i]
Over the next minute, $n$ kiwis fall on Neeton’s head. Let $S$ be the set of all possible values of Neeton’s distance from the tree. Let m and M be numbers such that $m < x < M$ for all elements $x$ in $S$. If the least possible value of $M - m$ is $\frac{2000}{16899}$ centimeters, what is the value of $n$?
Note that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, and $\lceil x \rceil$ is the least integer greater than or equal to $x$.
[b]7.2.[/b] Nithin is playing chess. If one queen is randomly placed on an $ 8 \times 8$ chessboard, what is the expected number of squares that will be attacked including the square that the queen is placed on? (A square is under attack if the queen can legally move there in one move, and a queen can legally move any number of squares diagonally, horizontally or vertically.)
[b]7.3.[/b] Nithin is writing binary strings, where each character is either a $0$ or a $1$. How many binary strings of length $12$ can he write down such that $0000$ and $1111$ do not appear?
[u]Round 8[/u]
[b]8.[/b] What is the period of the fraction $1/2018$? (The period of a fraction is the length of the repeated portion of its decimal representation.) Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.1 |I|}, 13 - \frac{|I-X|}{0.1 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2765571p24215461]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 China Team Selection Test, 3
Let $P$ be a finite set of primes, $A$ an infinite set of positive integers, where every element of $A$ has a prime factor not in $P$. Prove that there exist an infinite subset $B$ of $A$, such that the sum of elements in any finite subset of $B$ has a prime factor not in $P$.
2013 AMC 8, 10
What is the ratio of the least common multiple of 180 and 594 to the greatest common factor of 180 and 594?
$\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 165 \qquad \textbf{(C)}\ 330 \qquad \textbf{(D)}\ 625 \qquad \textbf{(E)}\ 660$
2021 IMO Shortlist, N6
Determine all integers $n\geqslant 2$ with the following property: every $n$ pairwise distinct integers whose sum is not divisible by $n$ can be arranged in some order $a_1,a_2,\ldots, a_n$ so that $n$ divides $1\cdot a_1+2\cdot a_2+\cdots+n\cdot a_n.$
[i]Arsenii Nikolaiev, Anton Trygub, Oleksii Masalitin, and Fedir Yudin[/i]
2018 Nepal National Olympiad, 1b
[b]Problem Section #1
b) Let $a, b$ be positive integers such that $b^n +n$ is a multiple of $a^n + n$ for all positive integers $n$. Prove that $a = b.$
2011 Vietnam Team Selection Test, 4
Let $\langle a_n\rangle_{n\ge 0}$ be a sequence of integers satisfying $a_0=1, a_1=3$ and $a_{n+2}=1+\left\lfloor \frac{a_{n+1}^2}{a_n}\right\rfloor \ \ \forall n\ge0.$
Prove that
$a_n\cdot a_{n+2}-a_{n+1}^2=2^n$ for every natural number $n.$
PEN O Problems, 39
Find the smallest positive integer $n$ for which there exist $n$ different positive integers $a_{1}, a_{2}, \cdots, a_{n}$ satisfying [list] [*] $\text{lcm}(a_1,a_2,\cdots,a_n)=1985$,[*] for each $i, j \in \{1, 2, \cdots, n \}$, $gcd(a_i,a_j)\not=1$, [*] the product $a_{1}a_{2} \cdots a_{n}$ is a perfect square and is divisible by $243$, [/list] and find all such $n$-tuples $(a_{1}, \cdots, a_{n})$.
2017 Baltic Way, 20
Let $S$ be the set of all ordered pairs $(a,b)$ of integers with $0<2a<2b<2017$ such that $a^2+b^2$ is a multiple of $2017$. Prove that \[\sum_{(a,b)\in S}a=\frac{1}{2}\sum_{(a,b)\in S}b.\]
Proposed by Uwe Leck, Germany