This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2009 AMC 10, 25

For $ k>0$, let $ I_k\equal{}10\ldots 064$, where there are $ k$ zeros between the $ 1$ and the $ 6$. Let $ N(k)$ be the number of factors of $ 2$ in the prime factorization of $ I_k$. What is the maximum value of $ N(k)$? $ \textbf{(A)}\ 6\qquad \textbf{(B)}\ 7\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 9\qquad \textbf{(E)}\ 10$

1991 India Regional Mathematical Olympiad, 7

Prove that $n^4 + 4^{n}$ is composite for all values of $n$ greater than $1$.

2025 AIME, 2

Find the sum of all positive integers $n$ such that $n+2$ divides the product $3(n+3)(n^2+9)$.

2011 Puerto Rico Team Selection Test, 3

(a) Prove that (p^2)-1 is divisible by 24 if p is a prime number greater than 3. (b) Prove that (p^2)-(q^2) is divisible by 24 if p and q are prime numbers greater than 3.

2013 Mexico National Olympiad, 5

A pair of integers is special if it is of the form $(n, n-1)$ or $(n-1, n)$ for some positive integer $n$. Let $n$ and $m$ be positive integers such that pair $(n, m)$ is not special. Show $(n, m)$ can be expressed as a sum of two or more different special pairs if and only if $n$ and $m$ satisfy the inequality $ n+m\geq (n-m)^2 $. Note: The sum of two pairs is defined as $ (a, b)+(c, d) = (a+c, b+d) $.

2022 Dutch IMO TST, 4

Determine all positive integers $d,$ such that there exists an integer $k\geq 3,$ such that One can arrange the numbers $d,2d,\ldots,kd$ in a row, such that the sum of every two consecutive of them is a perfect square.

2006 China Team Selection Test, 2

Prove that for any given positive integer $m$ and $n$, there is always a positive integer $k$ so that $2^k-m$ has at least $n$ different prime divisors.

2007 Indonesia MO, 8

Let $ m$ and $ n$ be two positive integers. If there are infinitely many integers $ k$ such that $ k^2\plus{}2kn\plus{}m^2$ is a perfect square, prove that $ m\equal{}n$.

1999 Rioplatense Mathematical Olympiad, Level 3, 2

Let $p_1, p_2, ..., p_k$ be $k$ different primes. We consider all positive integers that use only these primes (not necessarily all) in their prime factorization, and arrange those numbers in increasing order, forming an infinite sequence: $a_1 < a_2 < ... < a_n < ...$ Prove that, for every number $c$, there exists $n$ such that $a_{n+1} -a_n > c$.

1984 IMO Longlists, 13

Prove: (a) There are infinitely many triples of positive integers $m, n, p$ such that $4mn - m- n = p^2 - 1.$ (b) There are no positive integers $m, n, p$ such that $4mn - m- n = p^2.$

2014 Lithuania Team Selection Test, 2

Finite set $A$ has such property: every six its distinct elements’ sum isn’t divisible by $6$. Does there exist such set $A$ consisting of $11$ distinct natural numbers?

2023 China Team Selection Test, P20

Let $a,b,d$ be integers such that $\left|a\right| \geqslant 2$, $d \geqslant 0$ and $b \geqslant \left( \left|a\right| + 1\right)^{d + 1}$. For a real coefficient polynomial $f$ of degree $d$ and integer $n$, let $r_n$ denote the residue of $\left[ f(n) \cdot a^n \right]$ mod $b$. If $\left \{ r_n \right \}$ is eventually periodic, prove that all the coefficients of $f$ are rational.

1995 North Macedonia National Olympiad, 3

Prove that the product of $8$ consecutive natural numbers can never be a fourth power of natural number.

2022 Peru MO (ONEM), 4

For each positive integer n, the number $R(n) = 11 ... 1$ is defined, which is made up of exactly $n$ digits equal to $1$. For example, $R(5) = 11111$. Let $n > 4$ be an integer for which, by writing all the positive divisors of $R(n)$, it is true that each written digit belongs to the set $\{0, 1\}$. Show that $n$ is a power of an odd prime number. Clarification: A power of an odd prime number is a number of the form $p^a$, where $p$ is an odd prime number and $a$ is a positive integer.

2001 AIME Problems, 10

Let $S$ be the set of points whose coordinates $x,$ $y,$ and $z$ are integers that satisfy $0\le x\le2,$ $0\le y\le3,$ and $0\le z\le4.$ Two distinct points are randomly chosen from $S.$ The probability that the midpoint of the segment they determine also belongs to $S$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2022 Germany Team Selection Test, 2

Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$

2019 Latvia Baltic Way TST, 14

Let $m$ be a positive integer and $p$ be a prime, such that $m^2 - 2$ is divisible by $p$. Suppose that there exists positive integer $a$ such that $a^2+m-2$ is divisible by $p$. Prove that there exists positive integer $b$ such that $b^2- m -2$ is divisible by $p$.

1979 IMO Longlists, 52

Let a real number $\lambda > 1$ be given and a sequence $(n_k)$ of positive integers such that $\frac{n_{k+1}}{n_k}> \lambda$ for $k = 1, 2,\ldots$ Prove that there exists a positive integer $c$ such that no positive integer $n$ can be represented in more than $c$ ways in the form $n = n_k + n_j$ or $n = n_r - n_s$.

2001 JBMO ShortLists, 1

Find the positive integers $n$ that are not divisible by $3$ if the number $2^{n^2-10}+2133$ is a perfect cube. [hide="Note"] [color=#BF0000]The wording of this problem is perhaps not the best English. As far as I am aware, just solve the diophantine equation $x^3=2^{n^2-10}+2133$ where $x,n \in \mathbb{N}$ and $3\nmid n$.[/color][/hide]

2002 Iran Team Selection Test, 9

$\pi(n)$ is the number of primes that are not bigger than $n$. For $n=2,3,4,6,8,33,\dots$ we have $\pi(n)|n$. Does exist infinitely many integers $n$ that $\pi(n)|n$?

MOAA Individual Speed General Rounds, 2022 Speed

[b]p1.[/b] What is the value of the sum $2 + 20 + 202 + 2022$? [b]p2.[/b] Find the smallest integer greater than $10000$ that is divisible by $12$. [b]p3.[/b] Valencia chooses a positive integer factor of $6^{10}$ at random. The probability that it is odd can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime integers. Find $m + n$. [b]p4.[/b] How many three digit positive integers are multiples of $4$ but not $8$? [b]p5.[/b] At the Jane Street store, Andy accidentally buys $5$ dollars more worth of shirts than he had planned. Originally, including the tip to the cashier, he planned to spend all of the remaining $90$ dollars on his giftcard. To compensate for his gluttony, Andy instead gives the cashier a smaller, $12.5\%$ tip so that he still spends $90$ dollars total. How much percent tip was Andy originally planning on giving? [b]p6.[/b] Let $A,B,C,D$ be four coplanar points satisfying the conditions $AB = 16$, $AC = BC =10$, and $AD = BD = 17$. What is the minimum possible area of quadrilateral $ADBC$? [b]p7.[/b] How many ways are there to select a set of three distinct points from the vertices of a regular hexagon so that the triangle they form has its smallest angle(s) equal to $30^o$? [b]p8.[/b] Jaeyong rolls five fair $6$-sided die. The probability that the sum of some three rolls is exactly $8$ times the sum of the other two rolls can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p9.[/b] Find the least positive integer n for there exists some positive integer $k > 1$ for which $k$ and $k + 2$ both divide $\underbrace{11...1}_{n\,\,\,1's}$. [b]p10.[/b] For some real constant $k$, line $y = k$ intersects the curve $y = |x^4-1|$ four times: points $A$,$B$,$C$ and $D$, labeled from left to right. If $BC = 2AB = 2CD$, then the value of $k$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p11.[/b] Let a be a positive real number and $P(x) = x^2 -8x+a$ and $Q(x) = x^2 -8x+a+1$ be quadratics with real roots such that the positive difference of the roots of $P(x)$ is exactly one more than the positive difference of the roots of $Q(x)$. The value of a can be written as a common fraction $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [b]p12.[/b] Let $ABCD$ be a trapezoid satisfying $AB \parallel CD$, $AB = 3$, $CD = 4$, with area $35$. Given $AC$ and $BD$ intersect at $E$, and $M$, $N$, $P$, $Q$ are the midpoints of segments $AE$,$BE$,$CE$,$DE$, respectively, the area of the intersection of quadrilaterals $ABPQ$ and $CDMN$ can be expressed as $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]p13.[/b] There are $8$ distinct points $P_1, P_2, ... , P_8$ on a circle. How many ways are there to choose a set of three distinct chords such that every chord has to touch at least one other chord, and if any two chosen chords touch, they must touch at a shared endpoint? [b]p14.[/b] For every positive integer $k$, let $f(k) > 1$ be defined as the smallest positive integer for which $f(k)$ and $f(k)^2$ leave the same remainder when divided by $k$. The minimum possible value of $\frac{1}{x}f(x)$ across all positive integers $x \le 1000$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$. [b]p15.[/b] In triangle $ABC$, let $I$ be the incenter and $O$ be the circumcenter. If $AO$ bisects $\angle IAC$, $AB + AC = 21$, and $BC = 7$, then the length of segment $AI$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

V Soros Olympiad 1998 - 99 (Russia), 9.4

Simplify the fraction $\frac{123456788...87654321}{1234567899...987654321}$’ if the digit $8$ in the numerator occurs $2000$ times, and the digit $9$ in the denominator $1999$ occurs times (as a result you need to get an irreducible fraction).

2020 Iran Team Selection Test, 5

Given $k \in \mathbb{Z}$ prove that there exist infinite pairs of distinct natural numbers such that \begin{align*} n+s(2n)=m+s(2m) \\ kn+s(n^2)=km+s(m^2). \end{align*} ($s(n)$ denotes the sum of digits of $n$.) [i]Proposed by Mohammadamin Sharifi[/i]

2016 Nordic, 1

Determine all sequences of non-negative integers $a_1, \ldots, a_{2016}$ all less than or equal to $2016$ satisfying $i+j\mid ia_i+ja_j$ for all $i, j\in \{ 1,2,\ldots, 2016\}$.

2011 Postal Coaching, 1

Prove that, for any positive integer $n$, there exists a polynomial $p(x)$ of degree at most $n$ whose coefficients are all integers such that, $p(k)$ is divisible by $2^n$ for every even integer $k$, and $p(k) -1$ is divisible by $2^n$ for every odd integer $k$.