This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1953 Polish MO Finals, 4

Prove that if $ n $ is a natural number, then equality holds $$(\sqrt{2}- 1)^n = \sqrt{m} - \sqrt{m-1}$$ where $m$ is a natural number.

1997 All-Russian Olympiad Regional Round, 9.5

Given a set of $1997$ numbers such that if each number in the set, replace with the sum of the rest, you get the same set. Prove that the product of numbers in the set is equal to $0$.

2013 Harvard-MIT Mathematics Tournament, 11

Compute the prime factorization of $1007021035035021007001$. (You should write your answer in the form $p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k}$ where $p_1,\ldots,p_k$ are distinct prime numbers and $e_1,\ldots,e_k$ are positive integers.)

2005 India IMO Training Camp, 2

Determine all positive integers $n > 2$ , such that \[ \frac{1}{2} \varphi(n) \equiv 1 ( \bmod 6) \]

2001 Estonia National Olympiad, 2

Find the maximum value of $k$ for which one can choose $k$ integers out of $1,2... ,2n$ so that none of them divides another one.

2009 AMC 12/AHSME, 19

For each positive integer $ n$, let $ f(n)\equal{}n^4\minus{}360n^2\plus{}400$. What is the sum of all values of $ f(n)$ that are prime numbers? $ \textbf{(A)}\ 794\qquad \textbf{(B)}\ 796\qquad \textbf{(C)}\ 798\qquad \textbf{(D)}\ 800\qquad \textbf{(E)}\ 802$

2005 Mid-Michigan MO, 10-12

[b]p1.[/b] A tennis net is made of strings tied up together which make a grid consisting of small squares as shown below. [img]https://cdn.artofproblemsolving.com/attachments/9/4/72077777d57408d9fff0ea5e79be5ecb6fe8c3.png[/img] The size of the net is $100\times 10$ small squares. What is the maximal number of sides of small squares which can be cut without breaking the net into two separate pieces? (The side is cut only in the middle, not at the ends). [b]p2.[/b] What number is bigger $2^{300}$ or $3^{200}$ ? [b]p3.[/b] All noble knights participating in a medieval tournament in Camelot used nicknames. In the tournament each knight had combats with all other knights. In each combat one knight won and the second one lost. At the end of tournament the losers reported their real names to the winners and to the winners of their winners. Was there a person who knew the real names of all knights? [b]p4.[/b] Two players Tom and Sid play the following game. There are two piles of rocks, $10$ rocks in the first pile and $12$ rocks in the second pile. Each of the players in his turn can take either any amount of rocks from one pile or the same amount of rocks from both piles. The winner is the player who takes the last rock. Who does win in this game if Tom starts the game? [b]p5.[/b] There is an interesting $5$-digit integer. With a $1$ after it, it is three times as large as with a $1$ before it. What is the number? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Morocco TST, 2

Let $A$ be a set of positive integers such that a) if $a\in A$, the all the positive divisors of $a$ are also in $A$; b) if $a,b\in A$, with $1<a<b$, then $1+ab \in A$. Prove that if $A$ has at least 3 elements, then $A$ is the set of all positive integers.

2012 Moldova Team Selection Test, 5

Find all pairs $(m, n)$ of integers for which $$\sqrt{m^2-6}<2\sqrt{n}-m<\sqrt{m^2-2}.$$

2022 IFYM, Sozopol, 3

Let $p_1,p_2,\dots ,p_n$ be all prime numbers lesser than $2^{100}$. Prove that $\frac{1}{p_1} +\frac{1}{p_2} +\dots +\frac{1}{p_n} <10$.

2009 Jozsef Wildt International Math Competition, W. 16

Prove that $$\sum \limits_{k=1}^n \frac{1}{d(k)}>\sqrt{n+1}-1$$ For every $n\geq 1$, $d(n)$ is the number of divisors of $n$

1968 Spain Mathematical Olympiad, 7

In the sequence of powers of $2$ (written in the decimal system, beginning with $2^1 = 2$) there are three terms of one digit, another three of two digits, another three of $3$, four out of $4$, three out of $5$, etc. Clearly reason the answers to the following questions: a) Can there be only two terms with a certain number of digits? b) Can there be five consecutive terms with the same number of digits? c) Can there be four terms of n digits, followed by four with $n + 1$ digits? d) What is the maximum number of consecutive powers of $2$ that can be found without there being four among them with the same number of digits?

2003 India IMO Training Camp, 7

$p$ is a polynomial with integer coefficients and for every natural $n$ we have $p(n)>n$. $x_k $ is a sequence that: $x_1=1, x_{i+1}=p(x_i)$ for every $N$ one of $x_i$ is divisible by $N.$ Prove that $p(x)=x+1$

1990 Mexico National Olympiad, 3

Show that $n^{n-1}-1$ is divisible by$ (n-1)^2$ for $n > 2$.

2022 Austrian MO National Competition, 1

Find all functions $f : Z_{>0} \to Z_{>0}$ with $a - f(b) | af(a) - bf(b)$ for all $a, b \in Z_{>0}$. [i](Theresia Eisenkoelbl)[/i]

2010 AIME Problems, 4

Dave arrives at an airport which has twelve gates arranged in a straight line with exactly $ 100$ feet between adjacent gates. His departure gate is assigned at random. After waiting at that gate, Dave is told the departure gate has been changed to a different gate, again at random. Let the probability that Dave walks $ 400$ feet or less to the new gate be a fraction $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.

2011 IberoAmerican, 2

Find all positive integers $n$ for which exist three nonzero integers $x, y, z$ such that $x+y+z=0$ and: \[\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}\]

2008 ITest, 59

Let $a$ and $b$ be relatively prime positive integers such that \[\dfrac ab=\dfrac1{2^1}+\dfrac2{3^2}+\dfrac3{2^3}+\dfrac4{3^4}+\dfrac5{2^5}+\dfrac6{3^6}+\cdots,\] where the numerators always increase by $1$, and the denominators alternate between powers of $2$ and $3$, with exponents also increasing by $1$ for each subsequent term. Compute $a+b$.

1980 IMO Longlists, 3

Prove that the equation \[ x^n + 1 = y^{n+1}, \] where $n$ is a positive integer not smaller then 2, has no positive integer solutions in $x$ and $y$ for which $x$ and $n+1$ are relatively prime.

1989 Vietnam National Olympiad, 2

The Fibonacci sequence is defined by $ F_1 \equal{} F_2 \equal{} 1$ and $ F_{n\plus{}1} \equal{} F_n \plus{}F_{n\minus{}1}$ for $ n > 1$. Let $ f(x) \equal{} 1985x^2 \plus{} 1956x \plus{} 1960$. Prove that there exist infinitely many natural numbers $ n$ for which $ f(F_n)$ is divisible by $ 1989$. Does there exist $ n$ for which $ f(F_n) \plus{} 2$ is divisible by $ 1989$?

KoMaL A Problems 2018/2019, A. 753

Let $p$ be a prime divisor of $x^3 + x^2 - 4x + 1$. Prove that $p$ is a cubic residue modulo $13$.

2017 Saudi Arabia Pre-TST + Training Tests, 1

Let $m, n, k$ and $l$ be positive integers with $n \ne 1$ such that $n^k + mn^l + 1$ divides $n^{k+l }- 1$. Prove that either $m = 1$ and $l = 2k$, or $l | k$ and $m =\frac{n^{k-l} - 1}{n^l - 1}$.

2019 Greece National Olympiad, 1

Define the sequnce ${(a_n)}_{n\ge1}$ by $a_1=1$ and $a_n=5a_{n-1}+3^{n-1}$ for $n\ge2$. Find the greatest power of $2$ that divides $a_{2^{2019}}$.

2018 Iran Team Selection Test, 4

We say distinct positive integers  $a_1,a_2,\ldots ,a_n $ are "good" if their sum is equal to the sum of all pairwise $\gcd $'s among them. Prove that there are infinitely many $n$ s such that $n$ good numbers exist. [i]Proposed by Morteza Saghafian[/i]

MMPC Part II 1958 - 95, 1979

[b]p1.[/b] Solve for $x$ and $y$ if $\frac{1}{x^2}+\frac{1}{xy}=\frac{1}{9}$ and $\frac{1}{y^2}+\frac{1}{xy}=\frac{1}{16}$ [b]p2.[/b] Find positive integers $p$ and $q$, with $q$ as small as possible, such that $\frac{7}{10} <\frac{p}{q} <\frac{11}{15}$. [b]p3.[/b] Define $a_1 = 2$ and $a_{n+1} = a^2_n -a_n + 1$ for all positive integers $n$. If $i > j$, prove that $a_i$ and $a_j$ have no common prime factor. [b]p4.[/b] A number of points are given in the interior of a triangle. Connect these points, as well as the vertices of the triangle, by segments that do not cross each other until the interior is subdivided into smaller disjoint regions that are all triangles. It is required that each of the givien points is always a vertex of any triangle containing it. Prove that the number of these smaller triangular regions is always odd. [b]p5.[/b] In triangle $ABC$, let $\angle ABC=\angle ACB=40^o$ is extended to $D$ such that $AD=BC$. Prove that $\angle BCD=10^o$. [img]https://cdn.artofproblemsolving.com/attachments/6/c/8abfbf0dc38b76f017b12fa3ec040849e7b2cd.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].