Found problems: 15460
2020 MMATHS, 1
A positive integer $n$ is called an untouchable number if there is no positive integer $m$ for which the sum of the factors of $m$ (including $m$ itself) is $n + m$. Find the sum of all of the untouchable numbers between $1$ and $10$ (inclusive)
2004 ITAMO, 3
(a) Is $2005^{2004}$ the sum of two perfect squares?
(b) Is $2004^{2005}$ the sum of two perfect squares?
2022 Bangladesh Mathematical Olympiad, 6
About $5$ years ago, Joydip was researching on the number $2017$. He understood that $2017$ is a prime number. Then he took two integers $a,b$ such that $0<a,b <2017$ and $a+b\neq 2017.$ He created two sequences $A_1,A_2,\dots ,A_{2016}$ and $B_1,B_2,\dots, B_{2016}$ where $A_k$ is the remainder upon dividing $ak$ by $2017$, and $B_k$ is the remainder upon dividing $bk$ by $2017.$ Among the numbers $A_1+B_1,A_2+B_2,\dots A_{2016}+B_{2016}$ count of those that are greater than $2017$ is $N$. Prove that $N=1008.$
2021 BMT, 21
There exist integers $a$ and $b$ such that $(1 +\sqrt2)^{12}= a + b\sqrt2$. Compute the remainder when $ab$ is divided by $13$.
2012 JBMO TST - Turkey, 1
Find the greatest positive integer $n$ for which $n$ is divisible by all positive integers whose cube is not greater than $n.$
2023 IRN-SGP-TWN Friendly Math Competition, 6
$\mathbb{Z}[x]$ represents the set of all polynomials with integer coefficients. Find all functions $f:\mathbb{Z}[x]\rightarrow \mathbb{Z}[x]$ such that for any 2 polynomials $P,Q$ with integer coefficients and integer $r$, the following statement is true. \[P(r)\mid Q(r) \iff f(P)(r)\mid f(Q)(r).\]
(We define $a|b$ if and only if $b=za$ for some integer $z$. In particular, $0|0$.)
[i]Proposed by the4seasons.[/i]
2014 Hanoi Open Mathematics Competitions, 4
If $p$ is a prime number such that there exist positive integers $a$ and $b$ such that $\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}$ then $p$ is
(A): $3$, (B): $5$, (C): $11$, (D): $7$, (E) None of the above.
1991 AMC 12/AHSME, 19
Triangle $ABC$ has a right angle at $C$, $AC = 3$ and $BC = 4$. Triangle $ABD$ has a right angle at $A$ and $AD = 12$. Points $C$ and $D$ are on opposite sides of $\overline{AB}$. The line through $D$ parallel to $\overline{AC}$ meets $\overline{CB}$ extended at $E$. If $\frac{DE}{DB} = \frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, then $m + n = $
[asy]
size(170);
defaultpen(fontsize(10pt)+linewidth(.8pt));
pair C=origin, A=(0,3), B=(4,0), D=(7.2,12.6), E=(7.2,0);
draw(A--C--B--A--D--B--E--D);
label("$A$",A,W);
label("$B$",B,S);
label("$C$",C,SW);
label("$D$",D,NE);
label("$E$",E,SE);
[/asy]
$ \textbf{(A)}\ 25\qquad\textbf{(B)}\ 128\qquad\textbf{(C)}\ 153\qquad\textbf{(D)}\ 243\qquad\textbf{(E)}\ 256 $
1962 Kurschak Competition, 1
Show that the number of ordered pairs $(a, b)$ of positive integers with lowest common multiple $n$ is the same as the number of positive divisors of $n^2$.
Maryland University HSMC part II, 2023.3
Let $p$ be a prime, and $n > p$ be an integer. Prove that
\[ \binom{n+p-1}{p} - \binom{n}{p} \]
is divisible by $n$.
2022 BMT, Tie 2
A positive integer is called extra-even if all of its digits are even. Compute the number of positive integers $n$ less than or equal to $2022$ such that both $n$ and $2n$ are both extra-even.
2024 Indonesia TST, N
Let $a_1, \dots, a_n, b_1, \dots, b_n$ be $2n$ positive integers such that the $n+1$ products
\[a_1 a_2 a_3 \cdots a_n, b_1 a_2 a_3 \cdots a_n, b_1 b_2 a_3 \cdots a_n, \dots, b_1 b_2 b_3 \cdots b_n\]
form a strictly increasing arithmetic progression in that order. Determine the smallest possible integer that could be the common difference of such an arithmetic progression.
2018 CMIMC Number Theory, 7
For each $q\in\mathbb Q$, let $\pi(q)$ denote the period of the repeating base-$16$ expansion of $q$, with the convention of $\pi(q)=0$ if $q$ has a terminating base-$16$ expansion. Find the maximum value among \[\pi\left(\frac11\right),~\pi\left(\frac12\right),~\dots,~\pi\left(\frac1{70}\right).\]
2002 Spain Mathematical Olympiad, Problem 3
The function $g$ is defined about the natural numbers and satisfies the following conditions:
$g(2) = 1$
$g(2n) = g(n)$
$g(2n+1) = g(2n) +1.$
Where $n$ is a natural number such that $1 \leq n \leq 2002$.
Find the maximum value $M$ of $g(n).$ Also, calculate how many values of $n$ satisfy the condition of $g(n) = M.$
2011 ELMO Shortlist, 1
Prove that $n^3-n-3$ is not a perfect square for any integer $n$.
[i]Calvin Deng.[/i]
2017 Kyiv Mathematical Festival, 5
A triangle $ABC$ is given on the plane, such that all its vertices have integer coordinates. Does there necessarily exist a straight line which intersects the straight lines $AB,$ $BC,$ and $AC$ at three distinct points with integer coordinates?
2020 Estonia Team Selection Test, 3
The prime numbers $p$ and $q$ and the integer $a$ are chosen such that $p> 2$ and $a \not\equiv 1$ (mod $q$), but $a^p \equiv 1$ (mod $q$). Prove that $(1 + a^1)(1 + a^2)...(1 + a^{p - 1})\equiv 1$ (mod $q$) .
2020 Brazil National Olympiad, 2
For a positive integer $a$, define $F_1 ^{(a)}=1$, $F_2 ^{(a)}=a$ and for $n>2$, $F_n ^{(a)}=F_{n-1} ^{(a)}+F_{n-2} ^{(a)}$. A positive integer is [i]fibonatic[/i] when it is equal to $F_n ^{(a)}$ for a positive integer $a$ and $n>3$. Prove that there are infintely many not [i]fibonatic[/i] integers.
2000 ITAMO, 4
Let $n > 1$ be a fixed integer. Alberto and Barbara play the following game:
(i) Alberto chooses a positive integer,
(ii) Barbara chooses an integer greater than $1$ which is a multiple or submultiple of the number Alberto chose (including itself),
(iii) Alberto increases or decreases the Barbara’s number by $1$.
Steps (ii) and (iii) are alternatively repeated. Barbara wins if she succeeds to reach the number $n$ in at most $50$ moves. For which values of $n$ can she win, no matter how Alberto plays?
2015 China Team Selection Test, 3
For all natural numbers $n$, define $f(n) = \tau (n!) - \tau ((n-1)!)$, where $\tau(a)$ denotes the number of positive divisors of $a$. Prove that there exist infinitely many composite $n$, such that for all naturals $m < n$, we have $f(m) < f(n)$.
2020 HMNT (HMMO), 10
Sean enters a classroom in the Memorial Hall and sees a $1$ followed by $2020$ $0$'s on the blackboard. As he is early for class, he decides to go through the digits from right to left and independently erase the $n$th digit from the left with probability $\frac{n-1}{n}$. (In particular, the $1$ is never erased.) Compute the expected value of the number formed from the remaining digits when viewed as a base-$3$ number. (For example, if the remaining number on the board is $1000$, then its value is $27$.)
1985 Czech And Slovak Olympiad IIIA, 2
Let $A_1, A_2, A_3$ be nonempty sets of integers such that for $\{i, j, k\} = \{1, 2, 3\}$ holds
$$(x \in A_i, y\in A_j) \Rightarrow (x + y \in A_k, x - y \in A_k).$$
Prove that at least two of the sets $A_1, A_2, A_3$ are equal. Can any of these sets be disjoint?
2018 Baltic Way, 20
Find all the triples of positive integers $(a,b,c)$ for which the number
\[\frac{(a+b)^4}{c}+\frac{(b+c)^4}{a}+\frac{(c+a)^4}{b}\]
is an integer and $a+b+c$ is a prime.
2007 IMO Shortlist, 6
Let $ k$ be a positive integer. Prove that the number $ (4 \cdot k^2 \minus{} 1)^2$ has a positive divisor of the form $ 8kn \minus{} 1$ if and only if $ k$ is even.
[url=http://www.mathlinks.ro/viewtopic.php?p=894656#894656]Actual IMO 2007 Problem, posed as question 5 in the contest, which was used as a lemma in the official solutions for problem N6 as shown above.[/url]
[i]Author: Kevin Buzzard and Edward Crane, United Kingdom [/i]
2018 China Northern MO, 6
For $a_1 = 3$, define the sequence $a_1, a_2, a_3, \ldots$ for $n \geq 1$ as $$na_{n+1}=2(n+1)a_n-n-2.$$
Prove that for any odd prime $p$, there exist positive integer $m,$ such that $p|a_m$ and $p|a_{m+1}.$