Found problems: 15460
2015 BMT Spring, 8
An integer is between $0$ and $999999$ (inclusive) is chosen, and the digits of its decimal representation are summed. What is the probability that the sum will be $19$?
2000 Bundeswettbewerb Mathematik, 2
Prove that for every integer $n \geq 2$ there exist $n$ different positive integers such that for any two of these integers $a$ and $b$ their sum $a+b$ is divisible by their difference $a - b.$
EMCC Accuracy Rounds, 2016
[b]p1.[/b] A right triangle has a hypotenuse of length $25$ and a leg of length $16$. Compute the length of the other leg of this triangle.
[b]p2.[/b] Tanya has a circular necklace with $5$ evenly-spaced beads, each colored red or blue. Find the number of distinct necklaces in which no two red beads are adjacent. If a necklace can be transformed into another necklace through a series of rotations and reflections, then the two necklaces are considered to be the same.
[b]p3.[/b] Find the sum of the digits in the decimal representation of $10^{2016} - 2016$.
[b]p4.[/b] Let $x$ be a real number satisfying $$x^1 \cdot x^2 \cdot x^3 \cdot x^4 \cdot x^5 \cdot x^6 = 8^7.$$ Compute the value of $x^7$.
[b]p5.[/b] What is the smallest possible perimeter of an acute, scalene triangle with integer side lengths?
[b]p6.[/b] Call a sequence $a_1, a_2, a_3,..., a_n$ mountainous if there exists an index $t$ between $1$ and $n$ inclusive such that $$a_1 \le a_2\le ... \le a_t \,\,\,\, and \,\,\,\, a_t \ge a_{t+1} \ge ... \ge a_n$$
In how many ways can Bishal arrange the ten numbers $1$, $1$, $2$, $2$, $3$, $3$, $4$, $4$, $5$, and $5$ into a mountainous sequence? (Two possible mountainous sequences are $1$, $1$, $2$, $3$, $4$, $4$, $5$, $5$, $3$, $2$ and $5$, $5$, $4$, $4$, $3$, $3$, $2$, $2$, $1$, $1$.)
[b]p7.[/b] Find the sum of the areas of all (non self-intersecting) quadrilaterals whose vertices are the four points $(-3,-6)$, $(7,-1)$, $(-2, 9)$, and $(0, 0)$.
[b]p8.[/b] Mohammed Zhang's favorite function is $f(x) =\sqrt{x^2 - 4x + 5} +\sqrt{x^2 + 4x + 8}$. Find the minumum possible value of $f(x)$ over all real numbers $x$.
[b]p9.[/b] A segment $AB$ with length $1$ lies on a plane. Find the area of the set of points $P$ in the plane for which $\angle APB$ is the second smallest angle in triangle $ABP$.
[b]p10.[/b] A binary string is a dipalindrome if it can be produced by writing two non-empty palindromic strings one after the other. For example, $10100100$ is a dipalindrome because both $101$ and $00100$ are palindromes. How many binary strings of length $18$ are both palindromes and dipalindromes?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022-IMOC, N3
Find all positive integer $n$ satifying $$2n+3|n!-1$$
[i]Proposed by ltf0501[/i]
2000 Brazil Team Selection Test, Problem 4
[b]Problem:[/b]For a positive integer $ n$,let $ V(n; b)$ be the number of decompositions of $ n$ into a
product of one or more positive integers greater than $ b$. For example,$ 36 \equal{} 6.6 \equal{}4.9 \equal{} 3.12 \equal{} 3 .3. 4$, so that $ V(36; 2) \equal{} 5$.Prove that for all positive integers $ n$; b it holds that $ V(n;b)<\frac{n}{b}$. :)
2021 Bolivian Cono Sur TST, 1
Find the sum of all positive integers $n$ such that
$$\frac{n+11}{\sqrt{n-1}}$$
is an integer.
2007 Junior Balkan Team Selection Tests - Moldova, 5
Determine the smallest natural number written in the decimal system with the product of the digits equal to $10! = 1 \cdot 2 \cdot 3\cdot ... \cdot9\cdot10$.
2015 China Team Selection Test, 3
Let $a,b$ be two integers such that their gcd has at least two prime factors. Let $S = \{ x \mid x \in \mathbb{N}, x \equiv a \pmod b \} $ and call $ y \in S$ irreducible if it cannot be expressed as product of two or more elements of $S$ (not necessarily distinct). Show there exists $t$ such that any element of $S$ can be expressed as product of at most $t$ irreducible elements.
2020 Portugal MO, 1
It is said that a positive integer is not GOOD, if there exists a permutation of the integers from 1 to n, $(a_1,a_2,...,a_n)$ such that $k + a_k$ is a perfect square for all $k$. For example $5$ is a GOOD number, since the permutation $(3,2,1,5,4)$ checks the condition: $1 + 3 = 2^2$, $2 + 2 = 2^2$, $3 + 1 = 2^2$; $4 + 5 = 3^2$ and $5 +4 = 3^2$. Find all GOOD numbers up to $12$.
2011 Mongolia Team Selection Test, 3
Let $m$ and $n$ be positive integers such that $m>n$ and $m \equiv n \pmod{2}$. If $(m^2-n^2+1) \mid n^2-1$, then prove that $m^2-n^2+1$ is a perfect square.
(proposed by G. Batzaya, folklore)
2010 ELMO Shortlist, 4
Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$.
[i]Evan O' Dorney.[/i]
2004 Postal Coaching, 17
In a system of numeration with base $B$ , there are $n$ one-digit numbers less than $B$ whose cubes have $B-1$ in the units-digits place. Determine the relation between $n$ and $B$
2008 China Northern MO, 5
Assume $n$ is a positive integer and integer $a$ is the root of the equation $$x^4+3ax^2+2ax-2\times 3^n=0.$$ Find all $n$ and $ a$ that satisfy the conditions.
2008 Princeton University Math Competition, B1
What is the remainder, in base $10$, when $24_7 + 364_7 + 43_7 + 12_7 + 3_7 + 1_7$ is divided by $6$?
2018 Estonia Team Selection Test, 8
Find all integers $k \ge 5$ for which there is a positive integer $n$ with exactly $k$ positive divisors
$1 = d_1 <d_2 < ... <d_k = n$ and $d_2d_3 + d_3d_5 + d_5d_2 = n$.
2019 New Zealand MO, 4
Show that for all positive integers $k$, there exists a positive integer n such that $n2^k -7$ is a perfect square.
2023 CMWMC, R7
[b]p19.[/b] Sequences $a_n$ and $b_n$ of positive integers satisfy the following properties:
(1) $a_1 = b_1 = 1$
(2) $a_5 = 6, b_5 \ge 7$
(3) Both sequences are strictly increasing
(4) In each sequence, the difference between consecutive terms is either $1$ or $2$
(5) $\sum^5_{n=1}na_n =\sum^5_{n=1}nb_n = S$
Compute $S$.
[b]p20.[/b] Let $A$, $B$, and $C$ be points lying on a line in that order such that $AB = 4$ and $BC = 2$. Let $I$ be the circle centered at B passing through $C$, and let $D$ and $E$ be distinct points on $I$ such that $AD$ and $AE$ are tangent to $I$. Let $J$ be the circle centered at $C$ passing through $D$, and let $F$ and $G$ be distinct points on $J$ such that $AF$ and $AG$ are tangent to $J$ and $DG < DF$. Compute the area of quadrilateral $DEFG$.
[b]p21.[/b] Twain is walking randomly on a number line. They start at $0$, and flip a fair coin $10$ times. Every time the coin lands heads, they increase their position by 1, and every time the coin lands tails, they decrease their position by $1$. What is the probability that at some point the absolute value of their position is at least $3$?
PS. You should use hide for answers.
1966 Dutch Mathematical Olympiad, 2
For all $n$, $t_{n+1} = 2(t_n)^2 - 1$. Prove that gcd $(t_n,t_m) = 1$ if $n \ne m$.
1998 Bundeswettbewerb Mathematik, 4
Prove that $n + \big[ (\sqrt{2} + 1)^n\big] $ is odd for all positive integers $n$.
$\big[ x \big]$ denotes the greatest integer function.
2012 JBMO ShortLists, 5
Find all positive integers $x,y,z$ and $t$ such that $2^x3^y+5^z=7^t$.
2011 International Zhautykov Olympiad, 3
Let $\mathbb{N}$ denote the set of all positive integers. An ordered pair $(a;b)$ of numbers $a,b\in\mathbb{N}$ is called [i]interesting[/i], if for any $n\in\mathbb{N}$ there exists $k\in\mathbb{N}$ such that the number $a^k+b$ is divisible by $2^n$. Find all [i]interesting[/i] ordered pairs of numbers.
2025 Harvard-MIT Mathematics Tournament, 2
Mark writes the expression $\sqrt{\underline{abcd}}$ on the board, where $\underline{abcd}$ is a four-digit number and $a \neq 0.$ Derek, a toddler, decides to move the $a,$ changing Mark's expression to $a\sqrt{\underline{bcd}}.$ Surprisingly, these two expressions are equal. Compute the only possible four-digit number $\underline{abcd}.$
2003 Austria Beginners' Competition, 3
a) Show that the product of $5$ consecutive even integers is divisible by $15$.
b) Determine the largest integer $D$ such that the product of $5$ consecutive even integers is always divisible by $D$.
2015 Junior Balkan MO, 1
Find all prime numbers $a,b,c$ and positive integers $k$ satisfying the equation \[a^2+b^2+16c^2 = 9k^2 + 1.\]
Proposed by Moldova
2012 China Team Selection Test, 3
Let $x_n=\binom{2n}{n}$ for all $n\in\mathbb{Z}^+$. Prove there exist infinitely many finite sets $A,B$ of positive integers, satisfying $A \cap B = \emptyset $, and \[\frac{{\prod\limits_{i \in A} {{x_i}} }}{{\prod\limits_{j\in B}{{x_j}} }}=2012.\]