This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2015 European Mathematical Cup, 1

$A = \{a, b, c\}$ is a set containing three positive integers. Prove that we can find a set $B \subset A$, $B = \{x, y\}$ such that for all odd positive integers $m, n$ we have $$10\mid x^my^n-x^ny^m.$$ [i]Tomi Dimovski[/i]

2016 PUMaC Number Theory B, 3

For positive integers $i$ and $j$, define $d(i,j)$ as follows: $d(1,j) = 1, d(i,1) = 1$ for all $i$ and $j$, and for $i, j > 1$, $d(i,j) = d(i-1,j) + d(i,j-1) + d(i-1,j-1)$. Compute the remainder when $d(3,2016)$ is divided by $1000$.

MBMT Team Rounds, 2022

[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide] [b]D1.[/b] The product of two positive integers is $5$. What is their sum? [b]D2.[/b] Gavin is $4$ feet tall. He walks $5$ feet before falling forward onto a cushion. How many feet is the top of Gavin’s head from his starting point? [b]D3.[/b] How many times must Nathan roll a fair $6$-sided die until he can guarantee that the sum of his rolls is greater than $6$? [b]D4 / Z1.[/b] What percent of the first $20$ positive integers are divisible by $3$? [b]D5.[/b] Let $a$ be a positive integer such that $a^2 + 2a + 1 = 36$. Find $a$. [b]D6 / Z2.[/b] It is said that a sheet of printer paper can only be folded in half $7$ times. A sheet of paper is $8.5$ inches by $11$ inches. What is the ratio of the paper’s area after it has been folded in half $7$ times to its original area? [b]D7 / Z3.[/b] Boba has an integer. They multiply the number by $8$, which results in a two digit integer. Bubbles multiplies the same original number by 9 and gets a three digit integer. What was the original number? [b]D8.[/b] The average number of letters in the first names of students in your class of $24$ is $7$. If your teacher, whose first name is Blair, is also included, what is the new class average? [b]D9 / Z4.[/b] For how many integers $x$ is $9x^2$ greater than $x^4$? [b]D10 / Z5.[/b] How many two digit numbers are the product of two distinct prime numbers ending in the same digit? [b]D11 / Z6.[/b] A triangle’s area is twice its perimeter. Each side length of the triangle is doubled,and the new triangle has area $60$. What is the perimeter of the new triangle? [b]D12 / Z7.[/b] Let $F$ be a point inside regular pentagon $ABCDE$ such that $\vartriangle FDC$ is equilateral. Find $\angle BEF$. [b]D13 / Z8.[/b] Carl, Max, Zach, and Amelia sit in a row with $5$ seats. If Amelia insists on sitting next to the empty seat, how many ways can they be seated? [b]D14 / Z9.[/b] The numbers $1, 2, ..., 29, 30$ are written on a whiteboard. Gumbo circles a bunch of numbers such that for any two numbers he circles, the greatest common divisor of the two numbers is the same as the greatest common divisor of all the numbers he circled. Gabi then does the same. After this, what is the least possible number of uncircled numbers? [b]D15 / Z10.[/b] Via has a bag of veggie straws, which come in three colors: yellow, orange, and green. The bag contains $8$ veggie straws of each color. If she eats $22$ veggie straws without considering their color, what is the probability she eats all of the yellow veggie straws? [b]Z11.[/b] We call a string of letters [i]purple[/i] if it is in the form $CVCCCV$ , where $C$s are placeholders for (not necessarily distinct) consonants and $V$s are placeholders for (not necessarily distinct) vowels. If $n$ is the number of purple strings, what is the remainder when $n$ is divided by $35$? The letter $y$ is counted as a vowel. [b]Z12.[/b] Let $a, b, c$, and d be integers such that $a+b+c+d = 0$ and $(a+b)(c+d)(ab+cd) = 28$. Find $abcd$. [b]Z13.[/b] Griffith is playing cards. A $13$-card hand with Aces of all $4$ suits is known as a godhand. If Griffith and $3$ other players are dealt $13$-card hands from a standard $52$-card deck, then the probability that Griffith is dealt a godhand can be expressed in simplest form as $\frac{a}{b}$. Find $a$. [b]Z14.[/b] For some positive integer $m$, the quadratic $x^2 + 202200x + 2022m$ has two (not necessarily distinct) integer roots. How many possible values of $m$ are there? [b]Z15.[/b] Triangle $ABC$ with altitudes of length $5$, $6$, and $7$ is similar to triangle $DEF$. If $\vartriangle DEF$ has integer side lengths, find the least possible value of its perimeter. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 IFYM, Sozopol, 1

Let $p_1, p_2, p_3$, and $p$ be prime numbers. Prove that there exist $x,y\in \mathbb{Z}$ such that $y^2\equiv p_1 x^4-p_1 p_2^2 p_3^2\, (mod\, p)$.

2019 Estonia Team Selection Test, 1

Some positive integer $n$ is written on the board. Andrey and Petya is playing the following game. Andrey finds all the different representations of the number n as a product of powers of prime numbers (values degrees greater than 1), in which each factor is greater than all previous or equal to the previous one. Petya finds all different representations of the number $n$ as a product of integers greater than $1$, in which each factor is divisible by all the previous factors. The one who finds more performances wins, if everyone finds the same number of representations, the game ends in a draw. Find all positive integers $n$ for which the game will end in a draw. Note. The representation of the number $n$ as a product is also considered a representation consisting of a single factor $n$.

1997 Baltic Way, 10

Prove that in every sequence of $79$ consecutive positive integers written in the decimal system, there is a positive integer whose sum of digits is divisible by $13$.

2017 India National Olympiad, 2

Suppose $n \ge 0$ is an integer and all the roots of $x^3 + \alpha x + 4 - ( 2 \times 2016^n) = 0$ are integers. Find all possible values of $\alpha$.

2015 Greece Team Selection Test, 1

Solve in positive integers the following equation; $xy(x+y-10)-3x^2-2y^2+21x+16y=60$

1997 Croatia National Olympiad, Problem 1

Find the last four digits of each of the numbers $3^{1000}$ and $3^{1997}$.

2024 All-Russian Olympiad, 1

Let $p$ and $q$ be different prime numbers. We are given an infinite decreasing arithmetic progression in which each of the numbers $p^{23}, p^{24}, q^{23}$ and $q^{24}$ occurs. Show that the numbers $p$ and $q$ also occur in this progression. [i]Proposed by A. Kuznetsov[/i]

2013 International Zhautykov Olympiad, 2

Find all odd positive integers $n>1$ such that there is a permutation $a_1, a_2, a_3, \ldots, a_n$ of the numbers $1, 2,3, \ldots, n$ where $n$ divides one of the numbers $a_k^2 - a_{k+1} - 1$ and $a_k^2 - a_{k+1} + 1$ for each $k$, $1 \leq k \leq n$ (we assume $a_{n+1}=a_1$).

2024 Malaysian IMO Training Camp, 5

Let $n$ be an odd integer and $m=\phi(n)$ be the Euler's totient function. Call a set of residues $T=\{a_1, \cdots, a_k\} \pmod n$ to be [i]good[/i] if $\gcd(a_i, n) > 1$ $\forall i$, and $\gcd(a_i, a_j) = 1, \forall i \neq j$. Define the set $S_n$ consisting of the residues $$\sum_{i=1}^k a_i ^m\pmod{n}$$ over all possible residue sets $T=\{a_1,\cdots,a_k\}$ that is good. Determine $|S_n|$. [i]Proposed by Anzo Teh Zhao Yang[/i]

2012 ELMO Shortlist, 1

Find all positive integers $n$ such that $4^n+6^n+9^n$ is a square. [i]David Yang, Alex Zhu.[/i]

2013 Kazakhstan National Olympiad, 1

On the board written numbers from 1 to 25 . Bob can pick any three of them say $a,b,c$ and replace by $a^3+b^3+c^3$ . Prove that last number on the board can not be $2013^3$.

2021 ABMC., 2021 Oct

[b]p1.[/b] How many perfect squares are in the set: $\{1, 2, 4, 9, 10, 16, 17, 25, 36, 49\}$? [b]p2.[/b] If $a \spadesuit b = a^b - ab - 5$, what is the value of $2 \spadesuit 11$? [b]p3.[/b] Joe can catch $20$ fish in $5$ hours. Jill can catch $35$ fish in $7$ hours. If they work together, and the number of days it takes them to catch $900$ fish is represented by $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, what is $m + n$? Assume that they work at a constant rate without taking breaks and that there are an infinite number of fish to catch. [b]p4.[/b] What is the units digit of $187^{10}$? [b]p5.[/b] What is the largest number of regions we can create by drawing $4$ lines in a plane? [b]p6.[/b] A regular hexagon is inscribed in a circle. If the area of the circle is $2025\pi$, given that the area of the hexagon can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any number other than $1$, find $a + b + c$. [b]p7.[/b] Find the number of trailing zeroes in the product $3! \cdot 5! \cdot 719!$. [b]p8.[/b] How many ordered triples $(x, y, z)$ of odd positive integers satisfy $x + y + z = 37$? [b]p9.[/b] Let $N$ be a number with $2021$ digits that has a remainder of $1$ when divided by $9$. $S(N)$ is the sum of the digits of $N$. What is the value of $S(S(S(S(N))))$? [b]p10.[/b] Ayana rolls a standard die $10$ times. If the probability that the sum of the $10$ die is divisible by $6$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$, what is $m + n$? [b]p11.[/b] In triangle $ABC$, $AB=13$, $BC=14$, and $CA=15$. The inscribed circle touches the side $BC$ at point $D$. The line $AI$ intersects side $BC$ at point $K$ given that $I$ is the incenter of triangle $ABC$. What is the area of the triangle $KID$? [b]p12.[/b] Given the cubic equation $2x^3+8x^2-42x-188$, with roots $a, b, c$, evaluate $|a^2b+a^2c+ab^2+b^2c+c^2a+bc^2|$. [b]p13.[/b] In tetrahedron $ABCD$, $AB=6$, $BC=8$, $CA=10$, and $DA$, $DB$, $DC=20$. If the volume of $ABCD$ is $a\sqrt{b}$ where $a$, $b$ are positive integers and in simplified radical form, what is $a + b$? [b]p14.[/b] A $2021$-digit number starts with the four digits $2021$ and the rest of the digits are randomly chosen from the set $0$,$1$,$2$,$3$,$4$,$5$,$6$. If the probability that the number is divisible by $14$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. what is $m + n$? [b]p15.[/b] Let $ABCD$ be a cyclic quadrilateral with circumcenter $O_1$ and circumradius $20$, Let the intersection of $AC$ and $BD$ be $E$. Let the circumcenter of $\vartriangle EDC$ be $O_2$. Given that the circumradius of 4EDC is $13$; $O_1O_2 = 11$, $BE = 11 \sqrt2$, find $O_1E^2$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 USA Team Selection Test, 1

Let $\sqrt 3 = 1.b_1b_2b_3 \dots _{(2)}$ be the binary representation of $\sqrt 3$. Prove that for any positive integer $n$, at least one of the digits $b_n$, $b_{n+1}$, $\dots$, $b_{2n}$ equals $1$.

2010 China Western Mathematical Olympiad, 1

Suppose that $m$ and $k$ are non-negative integers, and $p = 2^{2^m}+1$ is a prime number. Prove that [b](a)[/b] $2^{2^{m+1}p^k} \equiv 1$ $(\text{mod } p^{k+1})$; [b](b)[/b] $2^{m+1}p^k$ is the smallest positive integer $n$ satisfying the congruence equation $2^n \equiv 1$ $(\text{mod } p^{k+1})$.

1969 IMO Shortlist, 25

$(GBR 2)$ Let $a, b, x, y$ be positive integers such that $a$ and $b$ have no common divisor greater than $1$. Prove that the largest number not expressible in the form $ax + by$ is $ab - a - b$. If $N(k)$ is the largest number not expressible in the form $ax + by$ in only $k$ ways, find $N(k).$

1969 Bulgaria National Olympiad, Problem 1

Prove that if the sum of $x^5,y^5$ and $z^5$, where $x,y$ and $z$ are integer numbers, is divisible by $25$ then the sum of some two of them is divisible by $25$.

2010 Indonesia TST, 1

Let $ f$ be a polynomial with integer coefficients. Assume that there exists integers $ a$ and $ b$ such that $ f(a)\equal{}41$ and $ f(b)\equal{}49$. Prove that there exists an integer $ c$ such that $ 2009$ divides $ f(c)$. [i]Nanang Susyanto, Jogjakarta[/i]

2018 Moscow Mathematical Olympiad, 1

Is there a number in the decimal notation of the square which has a sequence of digits "$2018$"?

2019 Peru EGMO TST, 4

Consider the numbers from $1$ to $32$. A game is made by placing all the numbers in pairs and replacing each pair with the largest prime divisor of the sum of the numbers of that couple. For example, if we match the $32$ numbers as: $(1, 2), (3,4),(5, 6), (7, 8),..., (27, 28),(29, 30), (31,32)$, we get the following list of $16$ numbers: $3,7,11,5,...,11,59,7$. where there are repetitions. The game continues in a similar way until in the end only one number remains. Determine the highest possible value from the number that remains at the end.

2013 AIME Problems, 14

For positive integers $n$ and $k$, let $f(n,k)$ be the remainder when $n$ is divided by $k$, and for $n>1$ let $F(n) = \displaystyle\max_{1 \le k \le \frac{n}{2}} f(n,k)$. Find the remainder when $\displaystyle\sum_{n=20}^{100} F(n)$ is divided by $1000$.

2015 ELMO Problems, 4

Let $a > 1$ be a positive integer. Prove that for some nonnegative integer $n$, the number $2^{2^n}+a$ is not prime. [i]Proposed by Jack Gurev[/i]