Found problems: 15460
2001 Tournament Of Towns, 2
Clara computed the product of the first $n$ positive integers, and Valerie computed the product of the first $m$ even positive integers, where $m\ge2$. They got the same answer. Prove that one of them had made a mistake.
2020 China Northern MO, P3
A set of $k$ integers is said to be a [i]complete residue system modulo[/i] $k$ if no two of its elements are congruent modulo $k$. Find all positive integers $m$ so that there are infinitely many positive integers $n$ wherein $\{ 1^n,2^n, \dots , m^n \}$ is a complete residue system modulo $m$.
2021 Peru Iberoamerican Team Selection Test, P5
Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.
2019 JBMO Shortlist, N1
Find all prime numbers $p$ for which there exist positive integers $x$, $y$, and $z$ such that the number
$x^p + y^p + z^p - x - y - z$
is a product of exactly three distinct prime numbers.
2022 Bulgaria National Olympiad, 3
Let $x>y>2022$ be positive integers such that $xy+x+y$ is a perfect square. Is it possible for every positive integer $z$ from the interval $[x+3y+1,3x+y+1]$ the numbers $x+y+z$ and $x^2+xy+y^2$ not to be coprime?
1955 Moscow Mathematical Olympiad, 309
A point $O$ inside a convex $n$-gon $A_1A_2 . . .A_n$ is connected with segments to its vertices. The sides of this $n$-gon are numbered $1$ to $n$ (distinct sides have distinct numbers). The segments $OA_1,OA_2, . . . ,OA_n$ are similarly numbered.
a) For $n = 9$ find a numeration such that the sum of the sides’ numbers is the same for all triangles $A_1OA_2, A_2OA_3, . . . , A_nOA_1$.
b) Prove that for $n = 10$ there is no such numeration.
2023 BmMT, Ind. Round
[b]p1.[/b] If $x$ is $20\%$ of $23$ and $y$ is $23\%$ of $20$, compute $xy$ .
[b]p2.[/b] Pablo wants to eat a banana, a mango, and a tangerine, one at a time. How many ways can he choose the order to eat the three fruits?
[b]p3.[/b] Let $a$, $b$, and $c$ be $3$ positive integers. If $a + \frac{b}{c} = \frac{11}{6}$ , what is the minimum value of $a + b + c$?
[b]p4.[/b] A rectangle has an area of $12$. If all of its sidelengths are increased by $2$, its area becomes $32$. What is the perimeter of the original rectangle?
[b]p5.[/b] Rohit is trying to build a $3$-dimensional model by using several cubes of the same size. The model’s front view and top view are shown below. Suppose that every cube on the upper layer is directly above a cube on the lower layer and the rotations are considered distinct. Compute the total number of different ways to form this model.
[img]https://cdn.artofproblemsolving.com/attachments/b/b/40615b956f3d18313717259b12fcd6efb74cf8.png[/img]
[b]p6.[/b] Priscilla has three octagonal prisms and two cubes, none of which are touching each other. If she chooses a face from these five objects in an independent and uniformly random manner, what is the probability the chosen face belongs to a cube? (One octagonal prism and cube are shown below.)
[img]https://cdn.artofproblemsolving.com/attachments/0/0/b4f56a381c400cae715e70acde2cdb315ee0e0.png[/img]
[b]p7.[/b] Let triangle $\vartriangle ABC$ and triangle $\vartriangle DEF$ be two congruent isosceles right triangles where line segments $\overline{AC}$ and $\overline{DF}$ are their respective hypotenuses. Connecting a line segment $\overline{CF}$ gives us a square $ACFD$ but with missing line segments $\overline{AC}$, $\overline{AD}$, and $\overline{DF}$. Instead, $A$ and $D$ are connected by an arc defined by the semicircle with endpoints $A$ and $D$. If $CF = 1$, what is the perimeter of the whole shape $ABCFED$ ?
[img]https://cdn.artofproblemsolving.com/attachments/2/5/098d4f58fee1b3041df23ba16557ed93ee9f5b.png[/img]
[b]p8.[/b] There are two moles that live underground, and there are five circular holes that the moles can hop out of. The five holes are positioned as shown in the diagram below, where $A$, $B$, $C$, $D$, and $E$ are the centers of the circles, $AE = 30$ cm, and congruent triangles $\vartriangle ABC$, $\vartriangle CBD$, and $\vartriangle CDE$ are equilateral. The two moles randomly choose exactly two of the five holes, hop out of the two chosen holes, and hop back in. What is the probability that the holes that the two moles hop out of have centers that are exactly $15$ cm apart?
[img]https://cdn.artofproblemsolving.com/attachments/c/e/b46ba87b954a1904043020d7a211477caf321d.png[/img]
[b]p9.[/b] Carson is planning a trip for $n$ people. Let $x$ be the number of cars that will be used and $y$ be the number of people per car. What is the smallest value of $n$ such that there are exactly $3$ possibilities for $x$ and $y$ so that $y$ is an integer, $x < y$, and exactly one person is left without a car?
[b]p10.[/b] Iris is eating an ice cream cone, which consists of a hemisphere of ice cream with radius $r > 0$ on top of a cone with height $12$ and also radius $r$. Iris is a slow eater, so after eating one-third of the ice cream, she notices that the rest of the ice cream has melted and completely filled the cone. Assuming the ice cream did not change volume after it melted, what is the value of $r$?
[b]p11.[/b] As Natasha begins eating brunch between $11:30$ AM and $12$ PM, she notes that the smaller angle between the minute and hour hand of the clock is $27$ degrees. What is the number of degrees in the smaller angle between the minute and hour hand when Natasha finishes eating brunch $20$ minutes later?
[b]p12.[/b] On a regular hexagon $ABCDEF$, Luke the frog starts at point $A$, there is food on points $C$ and $E$ and there are crocodiles on points $B$ and $D$. When Luke is on a point, he hops to any of the five other vertices with equal probability. What is the probability that Luke will visit both of the points with food before visiting any of the crocodiles?
[b]p13.[/b] $2023$ regular unit hexagons are arranged in a tessellating lattice, as follows. The first hexagon $ABCDEF$ (with vertices in clockwise order) has leftmost vertex $A$ at the origin, and hexagons $H_2$ and $H_3$ share edges $\overline{CD}$ and $\overline{DE}$ with hexagon $H_1$, respectively. Hexagon $H_4$ shares edges with both hexagons $H_2$ and $H_3$, and hexagons $H_5$ and $H_6$ are constructed similarly to hexagons H_2 and $H_3$. Hexagons $H_7$ to $H_{2022}$ are constructed following the pattern of hexagons $H_4$, $H_5$, $H_6$. Finally, hexagon H_{2023} is constructed, sharing an edge with both hexagons H2021 and H2022. Compute the perimeter of the resulting figure.
[img]https://cdn.artofproblemsolving.com/attachments/1/d/eaf0d04676bac3e3c197b4686dcddd08fce9ac.png[/img]
[b]p14.[/b] Aditya’s favorite number is a positive two-digit integer. Aditya sums the integers from $5$ to his favorite number, inclusive. Then, he sums the next $12$ consecutive integers starting after his favorite number. If the two sums are consecutive integers and the second sum is greater than the first sum, what is Aditya’s favorite number?
[b]p15.[/b] The $100^{th}$ anniversary of BMT will fall in the year $2112$, which is a palindromic year. Compute the sum of all years from $0000$ to $9999$, inclusive, that are palindromic when written out as four-digit numbers (including leading zeros). Examples include $2002$, $1991$, and $0110$.
[b]p16.[/b] Points $A$, $B$, $C$, $D$, and $E$ lie on line $r$, in that order, such that $DE = 2DC$ and $AB = 2BC$. Let $M$ be the midpoint of segment $\overline{AC}$. Finally, let point $P$ lie on $r$ such that $PE = x$. If $AB = 8x$, $ME = 9x$, and $AP = 112$, compute the sum of the two possible values of $CD$.
[b]p17.[/b] A parabola $y = x^2$ in the xy-plane is rotated $180^o$ about a point $(a, b)$. The resulting parabola has roots at $x = 40$ and $x = 48$. Compute $a + b$.
[b]p18.[/b] Susan has a standard die with values $1$ to $6$. She plays a game where every time she rolls the die, she permanently increases the value on the top face by $1$. What is the probability that, after she rolls her die 3 times, there is a face on it with a value of at least $7$?
[b]p19.[/b] Let $N$ be a $6$-digit number satisfying the property that the average value of the digits of $N^4$ is $5$. Compute the sum of the digits of $N^4$.
[b]p20.[/b] Let $O_1$, $O_2$, $...$, $O_8$ be circles of radius $1$ such that $O_1$ is externally tangent to $O_8$ and $O_2$ but no other circles, $O_2$ is externally tangent to $O_1$ and $O_3$ but no other circles, and so on. Let $C$ be a circle that is externally tangent to each of $O_1$, $O_2$, $...$, $O_8$. Compute the radius of $C$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Baltic Way, 16
Let $p$ be an odd prime. Find all positive integers $n$ for which $\sqrt{n^2-np}$ is a positive integer.
2007 Mongolian Mathematical Olympiad, Problem 3
Let $p$ be an odd prime number. Let $g$ be a primitive root of unity modulo $p$. Find all the values of $p$ such that the sets $A=\left\{k^2+1:1\le k\le\frac{p-1}2\right\}$ and $B=\left\{g^m:1\le m\le\frac{p-1}2\right\}$ are equal modulo $p$.
2011 Purple Comet Problems, 10
The diagram shows a large circular dart board with four smaller shaded circles each internally tangent to the larger circle. Two of the internal circles have half the radius of the large circle, and are, therefore, tangent to each other. The other two smaller circles are tangent to these circles. If a dart is thrown so that it sticks to a point randomly chosen on the dart board, then the probability that the dart sticks to a point in the shaded area is $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(150);
defaultpen(linewidth(0.8));
filldraw(circle((0,0.5),.5),gray);
filldraw(circle((0,-0.5),.5),gray);
filldraw(circle((2/3,0),1/3),gray);
filldraw(circle((-2/3,0),1/3),gray);
draw(unitcircle);
[/asy]
2011 India IMO Training Camp, 2
Find all pairs $(m,n)$ of nonnegative integers for which \[m^2 + 2 \cdot 3^n = m\left(2^{n+1} - 1\right).\]
[i]Proposed by Angelo Di Pasquale, Australia[/i]
2003 Junior Balkan Team Selection Tests - Moldova, 1
Let $n \ge 2003$ be a positive integer such that the number $1 + 2003n$ is a perfect square.
Prove that the number $n + 1$ is equal to the sum of $2003$ positive perfect squares.
2017 Brazil Team Selection Test, 4
Call a rational number $r$ [i]powerful[/i] if $r$ can be expressed in the form $\dfrac{p^k}{q}$ for some relatively prime positive integers $p, q$ and some integer $k >1$. Let $a, b, c$ be positive rational numbers such that $abc = 1$. Suppose there exist positive integers $x, y, z$ such that $a^x + b^y + c^z$ is an integer. Prove that $a, b, c$ are all [i]powerful[/i].
[i]Jeck Lim, Singapore[/i]
2014 Balkan MO Shortlist, N1
$\boxed{N1}$Let $n$ be a positive integer,$g(n)$ be the number of positive divisors of $n$ of the form $6k+1$ and $h(n)$ be the number of positive divisors of $n$ of the form $6k-1,$where $k$ is a nonnegative integer.Find all positive integers $n$ such that $g(n)$ and $h(n)$ have different parity.
2010 All-Russian Olympiad Regional Round, 9.8
For every positive integer $n$, let $S_n$ be the sum of the first $n$ prime numbers:
$S_1 = 2, S_2 = 2 + 3 = 5, S_3 = 2 + 3 + 5 = 10$, etc. Can both $S_n$ and $S_{n+1}$
be perfect squares?
2015 BMT Spring, 6
An integer-valued function $f$ satisfies $f(2) = 4$ and $f(mn) = f(m)f(n)$ for all integers $m$ and $n$. If $f$ is an increasing function, determine $f(2015)$.
2023 Israel TST, P2
For each positive integer $n$, define $A(n)$ to be the sum of its divisors, and $B(n)$ to be the sum of products of pairs of its divisors. For example,
\[A(10)=1+2+5+10=18\]
\[B(10)=1\cdot 2+1\cdot 5+1\cdot 10+2\cdot 5+2\cdot 10+5\cdot 10=97\]
Find all positive integers $n$ for which $A(n)$ divides $B(n)$.
2018 Brazil National Olympiad, 2
Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations.
[b]a)[/b] Show that if the initial number written is $0$, then Azambuja cannot reach his goal.
[b]b)[/b] Find all initial numbers for which Azambuja can achieve his goal.
KoMaL A Problems 2021/2022, A. 815
Let $q$ be a monic polynomial with integer coefficients. Prove that there exists a constant $C$ depending only on polynomial $q$ such that for an arbitrary prime number $p$ and an arbitrary positive integer $N \leq p$ the congruence $n! \equiv q(n) \pmod p$ has at most $CN^\frac {2}{3}$ solutions among any $N$ consecutive integers.
EMCC Accuracy Rounds, 2022
[b]p1.[/b] At a certain point in time, $20\%$ of seniors, $30\%$ of juniors, and $50\%$ of sophomores at a school had a cold. If the number of sick students was the same for each grade, the fraction of sick students across all three grades can be written as $\frac{a}{b}$ , where a and b are relatively prime positive integers. Find $a + b$.
[b]p2.[/b] The average score on Mr. Feng’s recent test is a $63$ out of $100$. After two students drop out of the class, the average score of the remaining students on that test is now a $72$. What is the maximum number of students that could initially have been in Mr. Feng’s class? (All of the scores on the test are integers between $0$ and $100$, inclusive.)
[b]p3.[/b] Madeline is climbing Celeste Mountain. She starts at $(0, 0)$ on the coordinate plane and wants to reach the summit at $(7, 4)$. Every hour, she moves either $1$ unit up or $1$ unit to the right. A strawberry is located at each of $(1, 1)$ and $(4, 3)$. How many paths can Madeline take so that she encounters exactly one strawberry?
[b]p4.[/b] Let $E$ be a point on side $AD$ of rectangle $ABCD$. Given that $AB = 3$, $AE = 4$, and $\angle BEC = \angle CED$, the length of segment $CE$ can be written as $\sqrt{a}$ for some positive integer $a$. Find $a$.
[b]p5.[/b] Lucy has some spare change. If she were to convert it into quarters and pennies, the minimum number of coins she would need is $66$. If she were to convert it into dimes and pennies, the minimum number of coins she would need is $147$. How much money, in cents, does Lucy have?
[b]p6.[/b] For how many positive integers $x$ does there exist a triangle with altitudes of length $20$, $22$, and $x$?
[b]p7.[/b] Compute the number of positive integers $x$ for which $\frac{x^{20}}{x+22}$ is an integer.
[b]p8.[/b] Vincent the Bug is crawling along an octagonal prism. He starts on a fixed vertex $A$, visits all other vertices exactly once by traveling along the edges, and returns to $A$. Find the number of paths Vincent could have taken.
[b]p9.[/b] Point $U$ is chosen inside square $ALEX$ so that $\angle AUL = 90^o$. Given that $UL = 56$ and $UE = 65$, what is the sum of all possible values for the area of square $ALEX$?
[b]p10.[/b] Miranda has prepared $8$ outfits, no two of which are the same quality. She asks her intern Andrea to order these outfits for the new runway show. Andrea first randomly orders the outfits in a list. She then starts removing outfits according to the following method: she chooses a random outfit which is both immediately preceded and immediately succeeded by a better outfit and then removes it. Andrea repeats this process until there are no outfits that can be removed. Given that the expected number of outfits in the final routine can be written as $\frac{a}{b}$ for some relatively prime positive integers $a$ and $b$, find $a + b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 Taiwan National Olympiad, 1
Find all integer solutions $(x,y)$ to the equation $\displaystyle \frac{x+y}{x^2-xy+y^2}=\frac{3}{7}$.
2010 Purple Comet Problems, 29
Square $ABCD$ is shown in the diagram below. Points $E$, $F$, and $G$ are on sides $\overline{AB}$, $\overline{BC}$ and $\overline{DA}$, respectively, so that lengths $\overline{BE}$, $\overline{BF}$, and $\overline{DG}$ are equal. Points $H$ and $I$ are the midpoints of segments $\overline{EF}$ and $\overline{CG}$, respectively. Segment $\overline{GJ}$ is the perpendicular bisector of segment $\overline{HI}$. The ratio of the areas of pentagon $AEHJG$ and quadrilateral $CIHF$ can be written as $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
draw((0,0)--(50,0)--(50,50)--(0,50)--cycle);
label("$A$",(0,50),NW);
label("$B$",(50,50),NE);
label("$C$",(50,0),SE);
label("$D$",(0,0),SW);
label("$E$",(0,100/3-1),W);
label("$F$",(100/3-1,0),S);
label("$G$",(20,50),N);
label("$H$",((100/3-1)/2,(100/3-1)/2),SW);
label("$I$",(35,25),NE);
label("$J$",(((100/3-1)/2+35)/2,((100/3-1)/2+25)/2),S);
draw((0,100/3-1)--(100/3-1,0));
draw((20,50)--(50,0));
draw((100/6-1/2,100/6-1/2)--(35,25));
draw((((100/3-1)/2+35)/2,((100/3-1)/2+25)/2)--(20,50));
[/asy]
2020 CMIMC Algebra & Number Theory, 7
Compute the positive difference between the two real solutions to the equation
$$(x-1)(x-4)(x-2)(x-8)(x-5)(x-7)+48\sqrt 3 = 0.$$
2006 All-Russian Olympiad Regional Round, 9.8
A number $N$ that is not divisible by $81$ can be represented as a sum of squares of three integers divisible by $3$. Prove that it is also representable as the sum of the squares of three integers not divisible by $3$.
2007 May Olympiad, 1
Determine the largest natural number that has all its digits different and is a multiple of $5$, $8$ and $11$.