Found problems: 15460
2022 Tuymaada Olympiad, 3
Is there a colouring of all positive integers in three colours so that for each positive integer the numbers of its divisors of any two colours differ at most by $2?$
2011 ELMO Problems, 5
Let $p>13$ be a prime of the form $2q+1$, where $q$ is prime. Find the number of ordered pairs of integers $(m,n)$ such that $0\le m<n<p-1$ and
\[3^m+(-12)^m\equiv 3^n+(-12)^n\pmod{p}.\]
[i]Alex Zhu.[/i]
[hide="Note"]The original version asked for the number of solutions to $2^m+3^m\equiv 2^n+3^n\pmod{p}$ (still $0\le m<n<p-1$), where $p$ is a Fermat prime.[/hide]
2010 IFYM, Sozopol, 1
Determine the ordered systems $(x,y,z)$ of positive rational numbers for which $x+\frac{1}{y},y+\frac{1}{z}$ and $z+\frac{1}{x}$ are integers.
2023 AIME, 6
Alice knows that $3$ red cards and $3$ black cards will be revealed to her one at a time in random order. Before each card is revealed, Alice must guess its color. If Alice plays optimally, the expected number of cards she will guess correctly is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2023 Thailand Mathematical Olympiad, 9
Prove that there exists an infinite sequence of positive integers $a_1,a_2,a_3,\dots$ such that for any positive integer $k$, $a_k^2+a_k+2023$ has at least $k$ distinct positive divisors.
1974 IMO Shortlist, 7
Let $a_i, b_i$ be coprime positive integers for $i = 1, 2, \ldots , k$, and $m$ the least common multiple of $b_1, \ldots , b_k$. Prove that the greatest common divisor of $a_1 \frac{m}{b_1} , \ldots, a_k \frac{m}{b_k}$ equals the greatest common divisor of $a_1, \ldots , a_k.$
EMCC Team Rounds, 2023
[b]p1.[/b] We define $a \oplus b = \frac{ab}{a+b}$. Compute $(3 \oplus 5) \oplus (5 \oplus 4)$.
[b]p2.[/b] Let $ABCD$ be a quadrilateral with $\angle A = 45^o$ and $\angle B = 45^o$. If $BC = 5\sqrt2$, $AD = 6\sqrt2$, and $AB = 18$, find the length of side $CD$.
[b]p3.[/b] A positive real number $x$ satisfies the equation $x^2 + x + 1 + \frac{1}{x }+\frac{1}{x^2} = 10$. Find the sum of all possible values of $x + 1 + \frac{1}{x}$.
[b]p4.[/b] David writes $6$ positive integers on the board (not necessarily distinct) from least to greatest. The mean of the first three numbers is $3$, the median of the first four numbers is $4$, the unique mode of the first five numbers is $5$, and the range of all 6 numbers is $6$. Find the maximum possible value of the product of David’s $6$ integers.
[b]p5.[/b] Let $ABCD$ be a convex quadrilateral such that $\angle A = \angle B = 120^o$ and $\angle C = \angle D = 60^o$. There exists a circle with center $I$ which is tangent to all four sides of $ABCD$. If $IA \cdot IB \cdot IC \cdot ID = 240$, find the area of quadrilateral $ABCD$.
[b]p6.[/b] The letters $EXETERMATH$ are placed into cells on an annulus as shown below. How many ways are there to color each cell of the annulus with red, blue, green, or yellow such that each letter is always colored the same color and adjacent cells are always colored differently?
[img]https://cdn.artofproblemsolving.com/attachments/3/5/b470a771a5279a7746c06996f2bb5487c33ecc.png[/img]
[b]p7.[/b] Let $ABCD$ be a square, and let $\omega$ be a quarter circle centered at $A$ passing through points $B$ and $D$. Points $E$ and $F$ lie on sides $BC$ and $CD$ respectively. Line $EF$ intersects $\omega$ at two points, $G$ and $H$. Given that $EG = 2$, $GH = 16$ and $HF = 9$, find the length of side $AB$.
[b]p8.[/b] Let x be equal to $\frac{2022! + 2021!}{2020! + 2019! + 2018!}$ . Find the closest integer to $2\sqrt{x}$.
[b]p9.[/b] For how many ordered pairs of positive integers $(m, n)$ is the absolute difference between $lcm(m, n)$ and $gcd(m, n)$ equal to $2023$?
[b]p10.[/b] There are $2023$ distinguishable frogs sitting on a number line with one frog sitting on $i$ for all integers $i$ between $-1011$ and $1011$, inclusive. Each minute, every frog randomly jumps either one unit left or one unit right with equal probability. After $1011$ minutes, over all possible arrangements of the frogs, what is the average number of frogs sitting on the number $0$?
[b]p11.[/b] Albert has a calculator initially displaying $0$ with two buttons: the first button increases the number on the display by one, and the second button returns the square root of the number on the display. Each second, he presses one of the two buttons at random with equal probability. What is the probability that Albert’s calculator will display the number $6$ at some point?
[b]p12.[/b] For a positive integer $k \ge 2$, let $f(k)$ be the number of positive integers $n$ such that n divides $(n-1)!+k$. Find $$f(2) + f(3) + f(4) + f(5) + ... + f(100).$$
[b]p13.[/b] Mr. Atf has nine towers shaped like rectangular prisms. Each tower has a $1$ by $1$ base. The first tower as height $1$, the next has height $2$, up until the ninth tower, which has height $9$. Mr. Atf randomly arranges these $9$ towers on his table so that their square bases form a $3$ by $3$ square on the surface of his table. Over all possible solids Mr. Atf could make, what is the average surface area of the solid?
[b]p14.[/b] Let $ABCD$ be a cyclic quadrilateral whose diagonals are perpendicular. Let $E$ be the intersection of $AC$ and $BD$, and let the feet of the altitudes from $E$ to the sides $AB$, $BC$, $CD$, $DA$ be $W, X, Y , Z$ respectively. Given that $EW = 2EY$ and $EW \cdot EX \cdot EY \cdot EZ = 36$, find the minimum possible value of $\frac{1}{[EAB]} +\frac{1}{[EBC]}+\frac{1}{[ECD]} +\frac{1}{[EDA]}$. The notation $[XY Z]$ denotes the area of triangle $XY Z$.
[b]p15.[/b] Given that $x^2 - xy + y^2 = (x + y)^3$, $y^2 - yz + z^2 = (y + z)^3$, and $z^2 - zx + x^2 = (z + x)^3$ for complex numbers $x, y, z$, find the product of all distinct possible nonzero values of $x + y + z$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Iberoamerican, 2
Let $S=\{13, 133, \cdots\}$ be the set of the positive integers of the form $133 \cdots 3$. Consider a horizontal row of $2022$ cells. Ana and Borja play a game: they alternatively write a digit on the leftmost empty cell, starting with Ana. When the row is filled, the digits are read from left to right to obtain a $2022$-digit number $N$. Borja wins if $N$ is divisible by a number in $S$, otherwise Ana wins. Find which player has a winning strategy and describe it.
2023 Princeton University Math Competition, A3 / B5
Call an arrangement of n not necessarily distinct nonnegative integers in a circle [i]wholesome[/i] when, for any subset of the integers such that no pair of them is adjacent in the circle, their average is an integer. Over all wholesome arrangements of $n$ integers where at least two of them are distinct, let $M(n)$ denote the smallest possible value for the maximum of the integers in the arrangement. What is the largest integer $n < 2023$ such that $M(n+1)$ is strictly greater than $M(n)$?
2008 Iran MO (2nd Round), 1
$\mathbb{N}$ is the set of positive integers and $a\in\mathbb{N}$. We know that for every $n\in\mathbb{N}$, $4(a^n+1)$ is a perfect cube. Prove that $a=1$.
2019 Regional Competition For Advanced Students, 4
Find all natural numbers $n$ that are smaller than $128^{97}$ and have exactly $2019$ divisors.
2018 Cono Sur Olympiad, 2
Prove that every positive integer can be formed by the sums of powers of 3, 4 and 7, where do not appear two powers of the same number and with the same exponent.
Example: $2= 7^0 + 7^0$ and $22=3^2 + 3^2+4^1$ are not valid representations, but $2=3^0+7^0$ and $22=3^2+3^0+4^1+4^0+7^1$ are valid representations.
2001 Baltic Way, 20
From a sequence of integers $(a, b, c, d)$ each of the sequences
\[(c, d, a, b),\quad (b, a, d, c),\quad (a + nc, b + nd, c, d),\quad (a + nb, b, c + nd, d)\]
for arbitrary integer $n$ can be obtained by one step. Is it possible to obtain $(3, 4, 5, 7)$ from $(1, 2, 3, 4)$ through a sequence of such steps?
2023 Junior Balkan Team Selection Tests - Moldova, 1
The positive integer $ n $ verifies $$\frac{1}{1\cdot(\sqrt{2}+\sqrt{1})+\sqrt{1}}+\frac{1}{2\cdot(\sqrt{3}+\sqrt{2})+\sqrt{2}}+\cdots+\frac{1}{n\cdot(\sqrt{n+1}+\sqrt{n})+\sqrt{n}}=\frac{2022}{2023}.$$ Find the sum of digits of number $ n $.
2025 Malaysian IMO Team Selection Test, 11
Let $n$, $d$ be positive integers such that $d>\frac{n}{2}$. Suppose $a_1, a_2,\cdots,a_{d+2}$ is a sequence of integers satisfying $a_{d+1}=a_1$, $a_{d+2}=a_2$, and for all indices $1\le i_1<i_2<\cdots <i_s\le d$, $$a_{i_1}+a_{i_2}+\cdots+a_{i_s}\not\equiv 0\pmod n$$ Prove that there exists $1\le i\le d$ such that $$a_{i+1}\equiv a_i \pmod n \quad \text{or} \quad a_{i+1}\equiv a_i+a_{i+2} \pmod n$$
[i]Proposed by Yeoh Zi Song[/i]
Mid-Michigan MO, Grades 10-12, 2007
[b]p1.[/b] $17$ rooks are placed on an $8\times 8$ chess board. Prove that there must be at least one rook that is attacking at least $2$ other rooks.
[b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $99$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a $6$ cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $500$ coins?
[b]p3.[/b] Find all solutions $a, b, c, d, e, f, g, h, i$ if these letters represent distinct digits and the following multiplication is correct:
$\begin{tabular}{ccccc}
& & a & b & c \\
x & & & d & e \\
\hline
& f & a & c & c \\
+ & g & h & i & \\
\hline
f & f & f & c & c \\
\end{tabular}$
[b]p4.[/b] Pinocchio rode a bicycle for $3.5$ hours. During every $1$-hour period he went exactly $5$ km. Is it true that his average speed for the trip was $5$ km/h? Explain your reasoning.
[b]p5.[/b] Let $a, b, c$ be odd integers. Prove that the equation $ax^2 + bx + c = 0$ cannot have a rational solution.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Contests, 1
Let $f(n)=\sum_{k=0}^{2010}n^k$. Show that for any integer $m$ satisfying $2\leqslant m\leqslant 2010$, there exists no natural number $n$ such that $f(n)$ is divisible by $m$.
[i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 1)[/i]
2019 Philippine TST, 4
Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.
2021 Austrian MO Regional Competition, 3
The numbers $1, 2, ..., 2020$ and $2021$ are written on a blackboard. The following operation is executed:
Two numbers are chosen, both are erased and replaced by the absolute value of their difference.
This operation is repeated until there is only one number left on the blackboard.
(a) Show that $2021$ can be the final number on the blackboard.
(b) Show that $2020$ cannot be the final number on the blackboard.
(Karl Czakler)
2015 QEDMO 14th, 3
Are there any rational numbers $x,y$ with $x^2 + y^2 = 2015$?
2022 Brazil National Olympiad, 4
Initially, a natural number $n$ is written on the blackboard. Then, at each minute, [i]Neymar[/i] chooses a divisor $d>1$ of $n$, erases $n$, and writes $n+d$. If the initial number on the board is $2022$, what is the largest composite number that [i]Neymar[/i] will never be able to write on the blackboard?
ICMC 6, 4
Do there exist infinitely many positive integers $m$ such that the sum of the positive divisors of $m$ (including $m$ itself) is a perfect square?
[i]Proposed by Dylan Toh[/i]
1997 Brazil Team Selection Test, Problem 4
Consider an $N\times N$ matrix, where $N$ is an odd positive integer, such that all its entries are $-1,0$ or $1$. Consider the sum of the numbers in every line and every column. Prove that at least two of the $2N$ sums are equal.
2003 Croatia National Olympiad, Problem 4
How many divisors of $30^{2003}$ are there which do not divide $20^{2000}$?
2024 ELMO Shortlist, N4
Find all pairs $(a,b)$ of positive integers such that $a^2\mid b^3+1$ and $b^2\mid a^3+1$.
[i]Linus Tang[/i]