Found problems: 15460
2017 IMO Shortlist, N3
Determine all integers $ n\geq 2$ having the following property: for any integers $a_1,a_2,\ldots, a_n$ whose sum is not divisible by $n$, there exists an index $1 \leq i \leq n$ such that none of the numbers $$a_i,a_i+a_{i+1},\ldots,a_i+a_{i+1}+\ldots+a_{i+n-1}$$ is divisible by $n$. Here, we let $a_i=a_{i-n}$ when $i >n$.
[i]Proposed by Warut Suksompong, Thailand[/i]
2020 Hong Kong TST, 1
Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for every positive integer $n$ the following is valid: If $d_1,d_2,\ldots,d_s$ are all the positive divisors of $n$, then $$f(d_1)f(d_2)\ldots f(d_s)=n.$$
1992 Baltic Way, 1
Let $p,q$ be two consecutive odd prime numbers. Prove that $p+q$ is a product of at least $3$ natural numbers greater than $1$ (not necessarily different).
2022 BMT, 10
Compute the number of ordered pairs $(a, b)$ of positive integers such that $a$ and $b$ divide $5040$ but share no common factors greater than $1$.
1968 Leningrad Math Olympiad, grade 7
[b]7.1[/b] A rectangle that is not a square is inscribed in a square. Prove that its semi-perimeter is equal to the diagonal of the square.
[b]7.2[/b] Find five numbers whose pairwise sums are 0, 2, 4,5, 7, 9, 10, 12, 14, 17.
[b]7.3 [/b] In a $1000$-digit number, all but one digit is a five. Prove that this number is not a perfect square.
[b]7.4 / 6.5[/b] Several teams took part in the volleyball tournament. Team A is considered stronger than team B if either A beat B or there is a team C such that A beat C, and C beat B. Prove that if team T is the winner of the tournament, then it is the strongest the rest of the teams.
[b]7.5[/b] In a pentagon $ABCDE$, $K$ is the midpoint of $AB$, $L$ is the midpoint of $BC$, $M$ is the midpoint of $CD$, $N$ is the midpoint of $DE$, $P$ is the midpoint of $KM$, $Q$ is the midpoint of $LN$. Prove that the segment $ PQ$ is parallel to side $AE$ and is equal to its quarter.
[img]https://cdn.artofproblemsolving.com/attachments/2/5/be8e9b0692d98115dbad04f960e8a856dc593f.png[/img]
[b]7.6 / 8.4[/b] Several circles are arbitrarily placed in a circle of radius $3$, the sum of their radii is $25$. Prove that there is a straight line that intersects at least $9$ of these circles.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988084_1968_leningrad_math_olympiad]here[/url].
2019 IFYM, Sozopol, 6
Does there exist a function $f: \mathbb N \to \mathbb N$ such that for all integers $n \geq 2$,
\[ f(f(n-1)) = f (n+1) - f(n)\, ?\]
2018 Brazil Undergrad MO, 23
How many prime numbers $ p $ the number $ p ^ 3-4 p + 9 $ is a perfect square
1989 IMO Shortlist, 11
Define sequence $ (a_n)$ by $ \sum_{d|n} a_d \equal{} 2^n.$ Show that $ n|a_n.$
2005 Thailand Mathematical Olympiad, 12
Find the number of even integers n such that $0 \le n \le 100$ and $5 | n^2 \cdot 2^{{2n}^2}+ 1$.
2016 ELMO Problems, 1
Cookie Monster says a positive integer $n$ is $crunchy$ if there exist $2n$ real numbers $x_1,x_2,\ldots,x_{2n}$, not all equal, such that the sum of any $n$ of the $x_i$'s is equal to the product of the other $n$ of the $x_i$'s. Help Cookie Monster determine all crunchy integers.
[i]Yannick Yao[/i]
2023 ABMC, 2023 Dec
[b]p1.[/b] Eric is playing Brawl Stars. If he starts playing at $11:10$ AM, and plays for $2$ hours total, then how many minutes past noon does he stop playing?
[b]p2.[/b] James is making a mosaic. He takes an equilateral triangle and connects the midpoints of its sides. He then takes the center triangle formed by the midsegments and connects the midpoints of its sides. In total, how many equilateral triangles are in James’ mosaic?
[b]p3.[/b] What is the greatest amount of intersections that $3$ circles and $3$ lines can have, given that they all lie on the same plane?
[b]p4.[/b] In the faraway land of Arkesia, there are two types of currencies: Silvers and Gold. Each Silver is worth $7$ dollars while each Gold is worth $17$ dollars. In Daniel’s wallet, the total dollar value of the Silvers is $1$ more than that of the Golds. What is the smallest total dollar value of all of the Silvers and Golds in his wallet?
[b]p5.[/b] A bishop is placed on a random square of a $8$-by-$8$ chessboard. On average, the bishop is able to move to $s$ other squares on the chessboard. Find $4s$.
Note: A bishop is a chess piece that can move diagonally in any direction, as far as it wants.
[b]p6.[/b] Andrew has a certain amount of coins. If he distributes them equally across his $9$ friends, he will have $7$ coins left. If he apportions his coins for each of his $15$ classmates, he will have $13$ coins to spare. If he splits the coins into $4$ boxes for safekeeping, he will have $2$ coins left over. What is the minimum number of coins Andrew could have?
[b]p7.[/b] A regular polygon $P$ has three times as many sides as another regular polygon $Q$. The interior angle of $P$ is $16^o$ greater than the interior angle of $Q$. Compute how many more diagonals $P$ has compared to $Q$.
[b]p8.[/b] In an certain airport, there are three ways to switch between the ground floor and second floor that are 30 meters apart: either stand on an escalator, run on an escalator, or climb the stairs. A family on vacation takes 65 seconds to climb up the stairs. A solo traveller late for their flight takes $25$ seconds to run upwards on the escalator. The amount of time (in seconds) it takes for someone to switch floors by standing on the escalator can be expressed as $\frac{u}{v}$ , where $u$ and $v$ are relatively prime. Find $u + v$.
(Assume everyone has the same running speed, and the speed of running on an escalator is the sum of the speeds of riding the escalator and running on the stairs.)
[b]p9.[/b] Avanish, being the studious child he is, is taking practice tests to improve his score. Avanish has a $60\%$ chance of passing a practice test. However, whenever Avanish passes a test, he becomes more confident and instead has a $70\%$ chance of passing his next immediate test. If Avanish takes $3$ practice tests in a row, the expected number of practice tests Avanish will pass can be expressed as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime. Find $a + b$.
[b]p10.[/b] Triangle $\vartriangle ABC$ has sides $AB = 51$, $BC = 119$, and $AC = 136$. Point $C$ is reflected over line $\overline{AB}$ to create point $C'$. Next, point $B$ is reflected over line $\overline{AC'}$ to create point $B'$. If $[B'C'C]$ can be expressed in the form of $a\sqrt{b}$, where $b$ is not divisible by any perfect square besides $1$, find $a + b$.
[b]p11[/b]. Define the following infinite sequence $s$: $$s = \left\{\frac{1}{1},\frac{1}{1 + 3},\frac{1}{1 + 3 + 6}, ... ,\frac{1}{1 + 3 + 6 + ...+ t_k},...\right\},$$
where $t_k$ denotes the $k$th triangular number. The sum of the first $2024$ terms of $s$, denoted $S$, can be
expressed as $$S = 3 \left(\frac{1}{2}+\frac{1}{a}-\frac{1}{b}\right),$$ where $a$ and $b$ are positive integers. Find the minimal possible value of $a + b$.
[b]p12.[/b] Omar writes the numbers from $1$ to $1296$ on a whiteboard and then converts each of them into base $6$. Find the sum of all of the digits written on the whiteboard (in base $10$), including both the base $10$ and base $6$ numbers.
[b]p13.[/b] A mountain number is a number in a list that is greater than the number to its left and right. Let $N$ be the amount of lists created from the integers $1$ - $100$ such that each list only has one mountain number. $N$ can be expressed as
$$N = 2^a(2^b - c^2),$$
where $a$, $b$ and $c$ are positive integers and $c$ is not divisible by $2$. Find $a + b+c$.
(The numbers at the beginning or end of a list are not considered mountain numbers.)[hide]Original problem was voided because the original format of the answer didn't match the result's format. So I changed it in the wording, in order the problem to be correct[/hide]
[b]p14.[/b] A circle $\omega$ with center $O$ has a radius of $25$. Chords $\overline{AB}$ and $\overline{CD}$ are drawn in $\omega$ , intersecting at $X$ such that $\angle BXC = 60^o$ and $AX > BX$. Given that the shortest distance of $O$ with $\overline{AB}$ and $\overline{CD}$ is $7$ and $15$ respectively, the length of $BX$ can be expressed as $x - \frac{y}{\sqrt{z}}$ , where $x$, $y$, and $z$ are positive integers such that $z$ is not divisible by any perfect square. Find $x + y + z.$ [hide]two answers were considered correct according to configuration[/hide]
[b]p15.[/b] How many ways are there to split the first $10$ natural numbers into $n$ sets (with $n \ge 1$) such that all the numbers are used and each set has the same average?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 International Zhautykov OIympiad, 5
Natural number $n>1$ is given. Let $I$ be a set of integers that are relatively prime to $n$. Define the function $f:I=>N$. We call a function $k-periodic$ if for any $a,b$ , $f(a)=f(b)$ whenever $ k|a-b $. We know that $f$ is $n-periodic$. Prove that minimal period of $f$ divides all other periods.
Example: if $n=6$ and $f(1)=f(5)$ then minimal period is 1, if $f(1)$ is not equal to $f(5)$ then minimal period is 3.
2010 Saint Petersburg Mathematical Olympiad, 2
There are $10$ consecutive 30-digit numbers. We write the biggest divisor for every number ( divisor is not equal number). Prove that some written numbers ends with same digit.
2021 Durer Math Competition Finals, 1
Show that if the difference of two positive cube numbers is a positive prime, then this prime number has remainder $1$ after division by $6$.
2024 JHMT HS, 9
Let $N \in \{10, 11, \ldots, 99\}$ be a two-digit positive integer. Compute the number of values of $N$ for which the last two digits in the decimal expansion of $N^{21}$ are the digits of $N$ in the same order.
2008 Indonesia TST, 4
Find all pairs of positive integer $\alpha$ and function $f : N \to N_0$ that satisfies
(i) $f(mn^2) = f(mn) + \alpha f(n)$ for all positive integers $m, n$.
(ii) If $n$ is a positive integer and $p$ is a prime number with $p|n$, then $f(p) \ne 0$ and $f(p)|f(n)$.
1996 IMO Shortlist, 1
Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle, moving in a clockwise direction; that is, the numbers $ a,b,c,d$ are replaced by $ a\minus{}b,b\minus{}c,c\minus{}d,d\minus{}a.$ Is it possible after 1996 such to have numbers $ a,b,c,d$ such the numbers $ |bc\minus{}ad|, |ac \minus{} bd|, |ab \minus{} cd|$ are primes?
2008 Indonesia TST, 2
Find all positive integers $1 \le n \le 2008$ so that there exist a prime number $p \ge n$ such that $$\frac{2008^p + (n -1)!}{n}$$ is a positive integer.
2006 Princeton University Math Competition, 1
Find the smallest positive integer $n$ such that $2n+1$ and $3n+1$ are both squares
2004 China Team Selection Test, 1
Let $ m_1$, $ m_2$, $ \cdots$, $ m_r$ (may not distinct) and $ n_1$, $ n_2$ $ \cdots$, $ n_s$ (may not distinct) be two groups of positive integers such that for any positive integer $ d$ larger than $ 1$, the numbers of which can be divided by $ d$ in group $ m_1$, $ m_2$, $ \cdots$, $ m_r$ (including repeated numbers) are no less than that in group $ n_1$, $ n_2$ $ \cdots$, $ n_s$ (including repeated numbers).
Prove that $ \displaystyle \frac{m_1 \cdot m_2 \cdots m_r}{n_1 \cdot n_2 \cdots n_s}$ is integer.
2022 Thailand TSTST, 3
Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.)
[i]Proposed by Hong Kong[/i]
1981 Polish MO Finals, 5
Determine all pairs of integers $(x,y)$ satisfying the equation
$$x^3 +x^2y+xy^2 +y^3 = 8(x^2 +xy+y^2 +1).$$
2008 Flanders Math Olympiad, 1
Determine all natural numbers $n$ of $4$ digits whose quadruple minus the number formed by the digits of $n$ in reverse order equals $30$.
2016 Azerbaijan National Mathematical Olympiad, 4
Let $A = \frac{1 \cdot 3 \cdot 5\cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)}$ Prove that in the infinite sequence $A, 2A, 4A, 8A, ..., 2^k A, ….$ only integers will be observed, eventually.
2010 AMC 10, 8
A ticket to a school play costs $ x$ dollars, where $ x$ is a whole number. A group of 9th graders buys tickets costing a total of $ \$48$, and a group of 10th graders buys tickets costing a total of $ \$64$. How many values of $ x$ are possible?
$ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$