This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2024 Balkan MO, 3

Let $a$ and $b$ be distinct positive integers such that $3^a + 2$ is divisible by $3^b + 2$. Prove that $a > b^2$. [i]Proposed by Tynyshbek Anuarbekov, Kazakhstan[/i]

2022 CMIMC, 2.1

Alice and Bob live on the same road. At time $t$, they both decide to walk to each other's houses at constant speed. However, they were busy thinking about math so that they didn't realize passing each other. Alice arrived at Bob's house at $3:19\text{pm}$, and Bob arrived at Alice's house at $3:29\text{pm}$. Charlie, who was driving by, noted that Alice and Bob passed each other at $3:11\text{pm}$. Find the difference in minutes between the time Alice and Bob left their own houses and noon on that day. [i]Proposed by Kevin You[/i]

2008 Saint Petersburg Mathematical Olympiad, 6

$a+b+c \leq 3000000$ and $a\neq b \neq c \neq a$ and $a,b,c$ are naturals. Find maximum $GCD(ab+1,ac+1,bc+1)$

2013 Singapore Senior Math Olympiad, 2

Find all pairs of integers $(m,n)$ such that $m^3-n^3=2mn +8$

2009 Indonesia TST, 1

Find the smallest odd integer $ k$ such that: for every $ 3\minus{}$degree polynomials $ f$ with integer coefficients, if there exist $ k$ integer $ n$ such that $ |f(n)|$ is a prime number, then $ f$ is irreducible in $ \mathbb{Z}[n]$.

2017-IMOC, N3

Find all functions $f:\mathbb N\to\mathbb N_0$ such that for all $m,n\in\mathbb N$, \begin{align*} f(mn)&=f(m)f(n)\\ f(m+n)&=\min(f(m),f(n))\qquad\text{if }f(m)\ne f(n)\end{align*}

2023 IMO, 1

Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.

2001 Greece National Olympiad, 2

Prove that there are no positive integers $a,b$ such that $(15a +b)(a +15b)$ is a power of $3.$

2017 Pan African, Problem 3

Let $n$ be a positive integer. - Find, in terms of $n$, the number of pairs $(x,y)$ of positive integers that are solutions of the equation : $$x^2-y^2=10^2.30^{2n}$$ - Prove further that this number is never a square

2020/2021 Tournament of Towns, P1

The number $2021 = 43 \cdot 47$ is composite. Prove that if we insert any number of digits “8” between 20 and 21 then the number remains composite. [i]Mikhail Evdikomov[/i]

2007 IMO Shortlist, 5

Find all surjective functions $ f: \mathbb{N} \to \mathbb{N}$ such that for every $ m,n \in \mathbb{N}$ and every prime $ p,$ the number $ f(m + n)$ is divisible by $ p$ if and only if $ f(m) + f(n)$ is divisible by $ p$. [i]Author: Mohsen Jamaali and Nima Ahmadi Pour Anari, Iran[/i]

2018 Regional Olympiad of Mexico Center Zone, 1

Let $M$ and $N$ be two positive five-digit palindrome integers, such that $M <N$ and there is no other palindrome number between them. Determine the possible values ​​of $N-M$.

2006 QEDMO 2nd, 5

For any natural number $m$, we denote by $\phi (m)$ the number of integers $k$ relatively prime to $m$ and satisfying $1 \le k \le m$. Determine all positive integers $n$ such that for every integer $k > n^2$, we have $n | \phi (nk + 1)$. (Daniel Harrer)

2012 Singapore Junior Math Olympiad, 5

Suppose $S = \{a_1, a_2,..., a_{15}\}$ is a set of $1 5$ distinct positive integers chosen from $2 , 3, ... , 2012$ such that every two of them are coprime. Prove that $S$ contains a prime number. (Note: Two positive integers $m, n$ are coprime if their only common factor is 1)

2015 JBMO Shortlist, NT4

Find all prime numbers $a,b,c$ and positive integers $k$ satisfying the equation \[a^2+b^2+16c^2 = 9k^2 + 1.\] Proposed by Moldova

2011 Indonesia TST, 4

Given an arbitrary prime $p>2011$. Prove that there exist positive integers $a, b, c$ not all divisible by $p$ such that for all positive integers $n$ that $p\mid n^4- 2n^2+ 9$, we have $p\mid 24an^2 + 5bn + 2011c$.

2008 China Northern MO, 3

Prove that: (1) There are infinitely many positive integers $n$ such that the largest prime factor of $n^2+1$ is less than $n.$ (2) There are infinitely many positive integers $n$ such that $n^2+1$ divides $n!$.

II Soros Olympiad 1995 - 96 (Russia), 9.4

$100$ schoolchildren took part in the Mathematical Olympiad. $4$ tasks were proposed. The first problem was solved by $90$ people, the second by $80$, the third by $70$ and the fourth by $60$. However, no one solved all the problems. Students who solved both the third and fourth questions received an award. How many students were awarded?

2006 All-Russian Olympiad, 2

If an integer $a > 1$ is given such that $\left(a-1\right)^3+a^3+\left(a+1\right)^3$ is the cube of an integer, then show that $4\mid a$.

2023 AMC 12/AHSME, 24

Integers $a, b, c, d$ satisfy the following: $abcd=2^6\cdot 3^9\cdot 5^7$ $\text{lcm}(a,b)=2^3\cdot 3^2\cdot 5^3$ $\text{lcm}(a,c)=2^3\cdot 3^3\cdot 5^3$ $\text{lcm}(a,d)=2^3\cdot 3^3\cdot 5^3$ $\text{lcm}(b,c)=2^1\cdot 3^3\cdot 5^2$ $\text{lcm}(b,d)=2^2\cdot 3^3\cdot 5^2$ $\text{lcm}(c,d)=2^2\cdot 3^3\cdot 5^2$ Find $\text{gcd}(a,b,c,d)$ $\textbf{(A)}~30\qquad\textbf{(B)}~45\qquad\textbf{(C)}~3\qquad\textbf{(D)}~15\qquad\textbf{(E)}~6$

2020 CMIMC Algebra & Number Theory, 6

Find all pairs of integers $(x,y)$ such that $x \geq 0$ and \[ (6^x-y)^2 = 6^{x+1}-y. \]

1967 IMO Longlists, 17

Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that \[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\] is divisible by the product $c_1c_2\ldots c_n$.

2014 ELMO Shortlist, 8

Let $\mathbb N$ denote the set of positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that: (i) The greatest common divisor of the sequence $f(1), f(2), \dots$ is $1$. (ii) For all sufficiently large integers $n$, we have $f(n) \neq 1$ and \[ f(a)^n \mid f(a+b)^{a^{n-1}} - f(b)^{a^{n-1}} \] for all positive integers $a$ and $b$. [i]Proposed by Yang Liu[/i]

1999 Baltic Way, 20

Let $a,b,c$ and $d$ be prime numbers such that $a>3b>6c>12d$ and $a^2-b^2+c^2-d^2=1749$. Determine all possible values of $a^2+b^2+c^2+d^2$ .

1967 AMC 12/AHSME, 25

For every odd number $p>1$ we have: $\textbf{(A)}\ (p-1)^{\frac{1}{2}(p-1)}-1 \; \text{is divisible by} \; p-2\qquad \textbf{(B)}\ (p-1)^{\frac{1}{2}(p-1)}+1 \; \text{is divisible by} \; p\\ \textbf{(C)}\ (p-1)^{\frac{1}{2}(p-1)} \; \text{is divisible by} \; p\qquad \textbf{(D)}\ (p-1)^{\frac{1}{2}(p-1)}+1 \; \text{is divisible by} \; p+1\\ \textbf{(E)}\ (p-1)^{\frac{1}{2}(p-1)}-1 \; \text{is divisible by} \; p-1$