Found problems: 15460
2020 USOMO, 3
Let $p$ be an odd prime. An integer $x$ is called a [i]quadratic non-residue[/i] if $p$ does not divide $x-t^2$ for any integer $t$.
Denote by $A$ the set of all integers $a$ such that $1\le a<p$, and both $a$ and $4-a$ are quadratic non-residues. Calculate the remainder when the product of the elements of $A$ is divided by $p$.
[i]Proposed by Richard Stong and Toni Bluher[/i]
2015 Azerbaijan IMO TST, 3
Let $n$ and $k$ be two positive integers such that $n>k$. Prove that the equation $x^n+y^n=z^k$ has a solution in positive integers if and only if the equation $x^n+y^n=z^{n-k}$ has a solution in positive integers.
2005 Thailand Mathematical Olympiad, 2
Let $S $ be a set of three distinct integers. Show that there are $a, b \in S$ such that $a \ne b$ and $10 | a^3b - ab^3$.
2019 India IMO Training Camp, P1
Let $a_1,a_2,\ldots, a_m$ be a set of $m$ distinct positive even numbers and $b_1,b_2,\ldots,b_n$ be a set of $n$ distinct positive odd numbers such that
\[a_1+a_2+\cdots+a_m+b_1+b_2+\cdots+b_n=2019\]
Prove that
\[5m+12n\le 581.\]
ICMC 5, 4
Let $p$ be a prime number. Find all subsets $S\subseteq\mathbb Z/p\mathbb Z$ such that
1. if $a,b\in S$, then $ab\in S$, and
2. there exists an $r\in S$ such that for all $a\in S$, we have $r-a\in S\cup\{0\}$.
[i]Proposed by Harun Khan[/i]
2012 Princeton University Math Competition, B6
Let $f_n(x) = n + x^2$. Evaluate the product $gcd\{f_{2001}(2002), f_{2001}(2003)\} \times gcd\{f_{2011}(2012), f_{2011}(2013)\} \times gcd\{f_{2021}(2022), f_{2021}(2023)\}$, where $gcd\{x, y\}$ is the greatest common divisor of $x$ and $y$
2016 BMT Spring, 1
A bag is filled with quarters and nickels. The average value when pulling out a coin is $10$ cents. What is the least number of nickels in the bag possible?
2013 Online Math Open Problems, 50
Let $S$ denote the set of words $W = w_1w_2\ldots w_n$ of any length $n\ge0$ (including the empty string $\lambda$), with each letter $w_i$ from the set $\{x,y,z\}$. Call two words $U,V$ [i]similar[/i] if we can insert a string $s\in\{xyz,yzx,zxy\}$ of three consecutive letters somewhere in $U$ (possibly at one of the ends) to obtain $V$ or somewhere in $V$ (again, possibly at one of the ends) to obtain $U$, and say a word $W$ is [i]trivial[/i] if for some nonnegative integer $m$, there exists a sequence $W_0,W_1,\ldots,W_m$ such that $W_0=\lambda$ is the empty string, $W_m=W$, and $W_i,W_{i+1}$ are similar for $i=0,1,\ldots,m-1$. Given that for two relatively prime positive integers $p,q$ we have
\[\frac{p}{q} = \sum_{n\ge0} f(n)\left(\frac{225}{8192}\right)^n,\]where $f(n)$ denotes the number of trivial words in $S$ of length $3n$ (in particular, $f(0)=1$), find $p+q$.
[i]Victor Wang[/i]
1969 Leningrad Math Olympiad, grade 6
[b]6.1 / 7.1[/b] There are $8$ rooks on the chessboard such that no two of them they don't hit each other. Prove that the black squares contain an even number of rooks.
[b]6.2 [/b] The natural numbers are arranged in a $3 \times 3$ table. Kolya and Petya crossed out 4 numbers each. It turned out that the sum of the numbers crossed out by Petya is three times the sum numbers crossed out by Kolya. What number is left uncrossed?
$$\begin{tabular}{|c|c|c|}\hline 4 & 12 & 8 \\ \hline 13 & 24 & 14 \\ \hline 7 & 5 & 23 \\ \hline \end{tabular} $$
[b]6.3 [/b] Misha and Sasha left at noon on bicycles from city A to city B. At the same time, I left from B to A Vanya. All three travel at constant but different speeds. At one o'clock Sasha was exactly in the middle between Misha and Vanya, and at half past one Vanya was in the middle between Misha and Sasha. When Misha will be exactly in the middle between Sasha and Vanya?
[b]6.4[/b] There are $35$ piles of nuts on the table. Allowed to add one nut at a time to any $23$ piles. Prove that by repeating this operation, you can equalize all the heaps.
[b]6.5[/b] There are $64$ vertical stripes on the round drum, and each stripe you need to write down a six-digit number from digits $1$ and $2$ so that all the numbers were different and any two adjacent ones differed in exactly one discharge. How to do this?
[b]6.6 / 7.6[/b] Two brilliant mathematicians were told in natural terms number and were told that these numbers differ by one. After that they take turns asking each other the same question: “Do you know my number?" Prove that sooner or later one of them will answer positively.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988085_1969_leningrad_math_olympiad]here[/url].
2023 Austrian MO National Competition, 4
Find all pairs of positive integers $(n, k)$ satisfying the equation $$n!+n=n^k.$$
1982 IMO Longlists, 38
Numbers $u_{n,k} \ (1\leq k \leq n)$ are defined as follows
\[u_{1,1}=1, \quad u_{n,k}=\binom{n}{k} - \sum_{d \mid n, d \mid k, d>1} u_{n/d, k/d}.\]
(the empty sum is defined to be equal to zero). Prove that $n \mid u_{n,k}$ for every natural number $n$ and for every $k \ (1 \leq k \leq n).$
2010 Postal Coaching, 5
Let $a, b, c$ be integers such that \[\frac ab+\frac bc+\frac ca= 3\] Prove that $abc$ is a cube of an integer.
2013 USAMO, 5
Given positive integers $m$ and $n$, prove that there is a positive integer $c$ such that the numbers $cm$ and $cn$ have the same number of occurrences of each non-zero digit when written in base ten.
2016 IFYM, Sozopol, 7
We are given a non-infinite sequence $a_1,a_2…a_n$ of natural numbers. While it is possible, on each turn are chosen two arbitrary indexes $i<j$ such that $a_i \nmid a_j$, and then $a_i$ and $a_j$ are changed with their $gcd$ and $lcm$. Prove that this process is non-infinite and the created sequence doesn’t depend on the made choices.
1992 Tournament Of Towns, (352) 1
Prove that there exists a sequence of $100$ different integers such that the sum of the squares of any two consecutive terms is a perfect square.
(S Tokarev)
2000 Harvard-MIT Mathematics Tournament, 1
You are given a number, and round it to the nearest thousandth, round this result to nearest hundredth, and round this result to the nearest tenth. If the final result is $.7$, what is the smallest number you could have been given? As is customary, $5$’s are always rounded up. Give the answer as a decimal.
2002 Taiwan National Olympiad, 1
Find all natural numbers $n$ and nonnegative integers $x_{1},x_{2},...,x_{n}$ such that $\sum_{i=1}^{n}x_{i}^{2}=1+\frac{4}{4n+1}(\sum_{i=1}^{n}x_{i})^{2}$.
2012 Cuba MO, 5
Find all pairs $(m, n)$ of positive integers such that $m^2 + n^2 =(m + 1)(n + 1).$
2001 India IMO Training Camp, 1
Complex numbers $\alpha$ , $\beta$ , $\gamma$ have the property that $\alpha^k +\beta^k +\gamma^k$ is an integer for every natural number $k$. Prove that the polynomial \[(x-\alpha)(x-\beta )(x-\gamma )\] has integer coefficients.
2012 Federal Competition For Advanced Students, Part 1, 1
Determine all functions $f: \mathbb{Z}\to\mathbb{Z}$ satisfying the following property: For each pair of integers $m$ and $n$ (not necessarily distinct), $\mathrm{gcd}(m, n)$ divides $f(m) + f(n)$.
Note: If $n\in\mathbb{Z}$, $\mathrm{gcd}(m, n)=\mathrm{gcd}(|m|, |n|)$ and $\mathrm{gcd}(n, 0)=n$.
1982 IMO Longlists, 49
Simplify
\[\sum_{k=0}^n \frac{(2n)!}{(k!)^2((n-k)!)^2}.\]
2012 BMT Spring, round 5
[b]p1.[/b] Let $n$ be the number so that $1 - 2 + 3 - 4 + ... - (n - 1) + n = 2012$. What is $4^{2012}$ (mod $n$)?
[b]p2. [/b]Consider three unit squares placed side by side. Label the top left vertex $P$ and the bottom four vertices $A,B,C,D$ respectively. Find $\angle PBA + \angle PCA + \angle PDA$.
[b]p3.[/b] Given $f(x) = \frac{3}{x-1}$ , then express $\frac{9(x^2-2x+1)}{x^2-8x+16}$ entirely in terms of $f(x)$. In other words, $x$ should not be in
your answer, only $f(x)$.
[b]p4.[/b] Right triangle with right angle $B$ and integer side lengths has $BD$ as the altitude. $E$ and $F$ are the incenters of triangles $ADB$ and $BDC$ respectively. Line $EF$ is extended and intersects $BC$ at $G$, and $AB$ at $H$. If $AB = 15$ and $BC = 8$, find the area of triangle $BGH$.
[b]p5.[/b] Let $a_1, a_2, ..., a_n$ be a sequence of real numbers. Call a $k$-inversion $(0 < k\le n)$ of a sequence to be indices $i_1, i_2, .. , i_k$ such that $i_1 < i_2 < .. < i_k$ but $a_{i1} > a_{i2} > ...> a_{ik}$ . Calculate the expected number of $6$-inversions in a random permutation of the set $\{1, 2, ... , 10\}$.
[b]p6.[/b] Chell is given a strip of squares labeled $1, .. , 6$ all placed side to side. For each $k \in {1, ..., 6}$, she then chooses one square at random in $\{1, ..., k\}$ and places a Weighted Storage Cube there. After she has placed all $6$ cubes, she computes her score as follows: For each square, she takes the number of cubes in the pile and then takes the square (i.e. if there were 3 cubes in a square, her score for that square would be $9$). Her overall score is the sum of the scores of each square. What is the expected value of her score?
PS. You had better use hide for answers.
2014 LMT, Team Round
[b]p1.[/b] Let $A\% B = BA - B - A + 1$. How many digits are in the number $1\%(3\%(3\%7))$ ?
[b]p2. [/b]Three circles, of radii $1, 2$, and $3$ are all externally tangent to each other. A fourth circle is drawn which passes through the centers of those three circles. What is the radius of this larger circle?
[b]p3.[/b] Express $\frac13$ in base $2$ as a binary number. (Which, similar to how demical numbers have a decimal point, has a “binary point”.)
[b]p4. [/b] Isosceles trapezoid $ABCD$ with $AB$ parallel to $CD$ is constructed such that $DB = DC$. If $AD = 20$, $AB = 14$, and $P$ is the point on $AD$ such that $BP + CP$ is minimized, what is $AP/DP$?
[b]p5.[/b] Let $f(x) = \frac{5x-6}{x-2}$ . Define an infinite sequence of numbers $a_0, a_1, a_2,....$ such that $a_{i+1} = f(a_i)$ and $a_i$ is always an integer. What are all the possible values for $a_{2014}$ ?
[b]p6.[/b] $MATH$ and $TEAM$ are two parallelograms. If the lengths of $MH$ and $AE$ are $13$ and $15$, and distance from $AM$ to $T$ is $12$, find the perimeter of $AMHE$.
[b]p7.[/b] How many integers less than $1000$ are there such that $n^n + n$ is divisible by $5$ ?
[b]p8.[/b] $10$ coins with probabilities of $1, 1/2, 1/3 ,..., 1/10$ of coming up heads are flipped. What is the probability that an odd number of them come up heads?
[b]p9.[/b] An infinite number of coins with probabilities of $1/4, 1/9, 1/16, ...$ of coming up heads are all flipped. What is the probability that exactly $ 1$ of them comes up heads?
[b]p10.[/b] Quadrilateral $ABCD$ has side lengths $AB = 10$, $BC = 11$, and $CD = 13$. Circles $O_1$ and $O_2$ are inscribed in triangles $ABD$ and $BDC$. If they are both tangent to $BD$ at the same point $E$, what is the length of $DA$ ?
PS. You had better use hide for answers.
1976 Dutch Mathematical Olympiad, 1
Prove that there is no natural $n$ such that $8n + 7$ is the sum of three squares.
MMPC Part II 1958 - 95, 1984
[b]p1.[/b] For what integers $n$ is $2^6 + 2^9 + 2^n$ the square of an integer?
[b]p2.[/b] Two integers are chosen at random (independently, with repetition allowed) from the set $\{1,2,3,...,N\}$. Show that the probability that the sum of the two integers is even is not less than the probability that the sum is odd.
[b]p3.[/b] Let $X$ be a point in the second quadrant of the plane and let $Y$ be a point in the first quadrant. Locate the point $M$ on the $x$-axis such that the angle $XM$ makes with the negative end of the $x$-axis is twice the angle $YM$ makes with the positive end of the $x$-axis.
[b]p4.[/b] Let $a,b$ be positive integers such that $a \ge b \sqrt3$. Let $\alpha^n = (a + b\sqrt3)^n = a_n + b_n\sqrt3$ for $n = 1,2,3,...$.
i. Prove that $\lim_{n \to + \infty} \frac{a_n}{b_n}$ exists.
ii. Evaluate this limit.
[b]p5.[/b] Suppose $m$ and $n$ are the hypotenuses are of Pythagorean triangles, i.e,, there are positive integers $a,b,c,d$, so that $m^2 = a^2 + b^2$ and $n^2= c^2 + d^2$. Show than $mn$ is the hypotenuse of at least two distinct Pythagorean triangles.
Hint: you may not assume that the pair $(a,b)$ is different from the pair $(c,d)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].