This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Japan MO Preliminary, 2

For $1\leq n\leq 2016$, how many integers $n$ satisfying the condition: the reminder divided by $20$ is smaller than the one divided by $16$.

2016 India Regional Mathematical Olympiad, 1

Find distinct positive integers $n_1<n_2<\dots<n_7$ with the least possible sum, such that their product $n_1 \times n_2 \times \dots \times n_7$ is divisible by $2016$.

2010 CHMMC Fall, 5

The three positive integers $a, b, c$ satisfy the equalities $gcd(ab, c^2) = 20$, $gcd(ac, b^2) = 18$, and $gcd(bc, a^2) = 75$. Compute the minimum possible value of $a + b + c$.

1996 Romania Team Selection Test, 2

Find the greatest positive integer $n$ for which there exist $n$ nonnegative integers $x_1, x_2,\ldots , x_n$, not all zero, such that for any $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ from the set $\{-1, 0, 1\}$, not all zero, $\varepsilon_1 x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n$ is not divisible by $n^3$.

2003 China Western Mathematical Olympiad, 3

Let $ n$ be a given positive integer. Find the smallest positive integer $ u_n$ such that for any positive integer $ d$, in any $ u_n$ consecutive odd positive integers, the number of them that can be divided by $ d$ is not smaller than the number of odd integers among $ 1, 3, 5, \ldots, 2n \minus{} 1$ that can be divided by $ d$.

2008 Mid-Michigan MO, 10-12

[b]p1.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the square $ABCD$ is $14$ cm. [img]https://cdn.artofproblemsolving.com/attachments/1/1/0f80fc5f0505fa9752b5c9e1c646c49091b4ca.png[/img] [b]p2.[/b] If $a, b$, and $c$ are numbers so that $a + b + c = 0$ and $a^2 + b^2 + c^2 = 1$. Compute $a^4 + b^4 + c^4$. [b]p3.[/b] A given fraction $\frac{a}{b}$ ($a, b$ are positive integers, $a \ne b$) is transformed by the following rule: first, $1$ is added to both the numerator and the denominator, and then the numerator and the denominator of the new fraction are each divided by their greatest common divisor (in other words, the new fraction is put in simplest form). Then the same transformation is applied again and again. Show that after some number of steps the denominator and the numerator differ exactly by $1$. [b]p4.[/b] A goat uses horns to make the holes in a new $30\times 60$ cm large towel. Each time it makes two new holes. Show that after the goat repeats this $61$ times the towel will have at least two holes whose distance apart is less than $6$ cm. [b]p5.[/b] You are given $555$ weights weighing $1$ g, $2$ g, $3$ g, $...$ , $555$ g. Divide these weights into three groups whose total weights are equal. [b]p6.[/b] Draw on the regular $8\times 8$ chessboard a circle of the maximal possible radius that intersects only black squares (and does not cross white squares). Explain why no larger circle can satisfy the condition. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 IMO Shortlist, 2

The function $f$ from the set $\mathbb{N}$ of positive integers into itself is defined by the equality \[f(n)=\sum_{k=1}^{n} \gcd(k,n),\qquad n\in \mathbb{N}.\] a) Prove that $f(mn)=f(m)f(n)$ for every two relatively prime ${m,n\in\mathbb{N}}$. b) Prove that for each $a\in\mathbb{N}$ the equation $f(x)=ax$ has a solution. c) Find all ${a\in\mathbb{N}}$ such that the equation $f(x)=ax$ has a unique solution.

2002 All-Russian Olympiad Regional Round, 8.1

Is it possible to fill all the cells of the table $9 \times 2002$ with natural numbers so that the sum of the numbers in any column and the sum of the numbers in any string would be prime numbers?

2012 China Girls Math Olympiad, 3

Find all pairs $(a,b)$ of integers satisfying: there exists an integer $d \ge 2$ such that $a^n + b^n +1$ is divisible by $d$ for all positive integers $n$.

2016 Japan Mathematical Olympiad Preliminary, 6

Integers $1 \le n \le 200$ are written on a blackboard just one by one. We surrounded just $100$ integers with circle. We call a square of the sum of surrounded integers minus the sum of not surrounded integers $score$ of this situation. Calculate the average score in all ways.

1981 Swedish Mathematical Competition, 6

Show that there are infinitely many triangles with side lengths $a$, $b$, $c$, where $a$ is a prime, $b$ is a power of $2$ and $c$ is the square of an odd integer.

2021 HMNT, 8

Paul and Sara are playing a game with integers on a whiteboard, with Paul going first. When it is Paul’s turn, he can pick any two integers on the board and replace them with their product; when it is Sara’s turn, she can pick any two integers on the board and replace them with their sum. Play continues until exactly one integer remains on the board. Paul wins if that integer is odd, and Sara wins if it is even. Initially, there are $2021$ integers on the board, each one sampled uniformly at random from the set $\{0, 1, 2, 3, . . . , 2021\}$. Assuming both players play optimally, the probability that Paul wins is $m/n$ , where $m, n$ are positive integers and $gcd(m, n) = 1$. Find the remainder when $m + n$ is divided by $1000$.

2019 Thailand TST, 2

Four positive integers $x,y,z$ and $t$ satisfy the relations \[ xy - zt = x + y = z + t. \] Is it possible that both $xy$ and $zt$ are perfect squares?

2019 Junior Balkan Team Selection Tests - Romania, 1

Determine positive integers $a$ and $b$ co-prime such that $a^2+b = (a-b)^3$ .

2019 Iran Team Selection Test, 6

For any positive integer $n$, define the subset $S_n$ of natural numbers as follow $$ S_n = \left\{x^2+ny^2 : x,y \in \mathbb{Z} \right\}.$$ Find all positive integers $n$ such that there exists an element of $S_n$ which [u]doesn't belong[/u] to any of the sets $S_1, S_2,\dots,S_{n-1}$. [i]Proposed by Yahya Motevassel[/i]

2015 Saudi Arabia Pre-TST, 3.3

Let $(a_n)_{n\ge0}$ be a sequence of positive integers such that $a^2_n$ divides $a_{n-1}a_{n+1}$, for all $n \ge 1$. Prove that if there exists an integer $k \ge 2$ such that $a_k$ and $a_1$ are relatively prime, then $a_1$ divides $a_0$. (Malik Talbi)

2007 May Olympiad, 2

Let $X= a1b9$ and $Y ab = 51ab$ be two positive integers where $a$ and $b$ are digits. $X$ is known to be multiple of a positive two-digit number $n$ and $Y$ is the next multiple of that number $n$. Find the number $n$ and the digits $a$ and $b$. Justify why there are no other possibilities.

1999 All-Russian Olympiad Regional Round, 9.1

All natural numbers from $1$ to $N$, $ N \ge 2$ are written out in a certain order in a circle. Moreover, for any pair of neighboring numbers there is at least one digit appearing in the decimal notation of each of them. Find the smallest possible value of $N$.

2021 Polish MO Finals, 1

Let $p_i$ for $i=1,2,..., k$ be a sequence of smallest consecutive prime numbers ($p_1=2$, $p_2=3$, $p_3=3$ etc. ). Let $N=p_1\cdot p_2 \cdot ... \cdot p_k$. Prove that in a set $\{ 1,2,...,N \}$ there exist exactly $\frac{N}{2}$ numbers which are divisible by odd number of primes $p_i$. [hide=example]For $k=2$ $p_1=2$, $p_2=3$, $N=6$. So in set $\{ 1,2,3,4,5,6 \}$ we can find $3$ number satisfying thesis: $2$, $3$ and $4$. ($1$ and $5$ are not divisible by $2$ or $3$, and $6$ is divisible by both of them so by even number of primes )[/hide]

2024/2025 TOURNAMENT OF TOWNS, P1

The teacher has chosen two different figures from $\{1, 2, 3, \dots, 9\}$. Nick intends to find a seven-digit number divisible by $7$ such that its decimal representation contains no figures besides these two. Is this possible for each teacher’s choice? (4 marks)

2004 Chile National Olympiad, 1

A company with $2004$ workers celebrated its anniversary by inviting everyone to a lunch served at a round table. When the $2004$ workers sat around this table, they formed a circle of people and soon discovered that they all had salaries. different and also that the difference between the salaries of any two neighbors, at the round table, was $2000$ or $3000$ pesos. Calculate the maximum difference that can exist between the wages of these workers.

2022 Moldova Team Selection Test, 12

Let $(x_n)_{n\geq1}$ be a sequence that verifies: $$x_1=1, \quad x_2=7, \quad x_{n+1}=x_n+3x_{n-1}, \forall n \geq 2.$$ Prove that for every prime number $p$ the number $x_p-1$ is divisible by $3p.$

2006 IMS, 2

For each subset $C$ of $\mathbb N$, Suppose $C\oplus C=\{x+y|x,y\in C, x\neq y\}$. Prove that there exist a unique partition of $\mathbb N$ to sets $A$, $B$ that $A\oplus A$ and $B\oplus B$ do not have any prime numbers.

1995 Argentina National Olympiad, 2

For each positive integer $n$ let $p(n)$ be the number of ordered pairs $(x,y)$ of positive integers such that$$\dfrac{1}{x}+\dfrac{1}{y} =\dfrac{1}{n}.$$For example, for $n=2$ the pairs are $(3,6),(4,4),(6,3)$. Therefore $p(2)=3$. a) Determine $p(n)$ for all $n$ and calculate $p(1995)$. b) Determine all pairs $n$ such that $p(n)=3$.

2018 Grand Duchy of Lithuania, 4

Find all positive integers $n$ for which there exists a positive integer $k$ such that for every positive divisor $d$ of $n$, the number $d - k$ is also a (not necessarily positive) divisor of $n$.