This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2020 Baltic Way, 16

Richard and Kaarel are taking turns to choose numbers from the set $\{1,\dots,p-1\}$ where $p > 3$ is a prime. Richard is the first one to choose. A number which has been chosen by one of the players cannot be chosen again by either of the players. Every number chosen by Richard is multiplied with the next number chosen by Kaarel. Kaarel wins the game if at any moment after his turn the sum of all of the products calculated so far is divisible by $p$. Richard wins if this does not happen, i.e. the players run out of numbers before any of the sums is divisible by $p$. Can either of the players guarantee their victory regardless of their opponent's moves and if so, which one?

2022 Serbia Team Selection Test, P5

Given is a positive integer $n$ divisible by $3$ and such that $2n-1$ is a prime. Does there exist a positive integer $x>n$ such that $$nx^{n+1}+(2n+1)x^n-3(n-1)x^{n-1}-x-3$$ is a product of the first few odd primes?

2010 Bundeswettbewerb Mathematik, 1

Exists a positive integer $n$ such that the number $\underbrace{1...1}_{n \,ones} 2 \underbrace{1...1}_{n \, ones}$ is a prime number?

2016 Vietnam National Olympiad, 3

a) Prove that if $n$ is an odd perfect number then $n$ has the following form \[ n=p^sm^2 \] where $p$ is prime has form $4k+1$, $s$ is positive integers has form $4h+1$, and $m\in\mathbb{Z}^+$, $m$ is not divisible by $p$. b) Find all $n\in\mathbb{Z}^+$, $n>1$ such that $n-1$ and $\frac{n(n+1)}{2}$ is perfect number

2013 BMT Spring, 5

Two positive integers $m$ and $n$ satisfy $$max \,(m, n) = (m - n)^2$$ $$gcd \,(m, n) = \frac{min \,(m, n)}{6}$$ Find $lcm\,(m, n)$

2013 NIMO Problems, 11

Find $100m+n$ if $m$ and $n$ are relatively prime positive integers such that \[ \sum_{\substack{i,j \ge 0 \\ i+j \text{ odd}}} \frac{1}{2^i3^j} = \frac{m}{n}. \][i]Proposed by Aaron Lin[/i]

Russian TST 2019, P3

Four positive integers $x,y,z$ and $t$ satisfy the relations \[ xy - zt = x + y = z + t. \] Is it possible that both $xy$ and $zt$ are perfect squares?

2007 Romania Team Selection Test, 2

The world-renowned Marxist theorist [i]Joric[/i] is obsessed with both mathematics and social egalitarianism. Therefore, for any decimal representation of a positive integer $n$, he tries to partition its digits into two groups, such that the difference between the sums of the digits in each group be as small as possible. Joric calls this difference the [i]defect[/i] of the number $n$. Determine the average value of the defect (over all positive integers), that is, if we denote by $\delta(n)$ the defect of $n$, compute \[\lim_{n \rightarrow \infty}\frac{\sum_{k = 1}^{n}\delta(k)}{n}.\] [i]Iurie Boreico[/i]

2022 Bolivia Cono Sur TST, P3

Is it possible to complete the following square knowning that each row and column make an aritmetic progression?

2006 Bosnia and Herzegovina Junior BMO TST, 1

. Find all triplets $(x, y, z)$, $x > y > z$ of positive integers such that $\frac{1}{x}+\frac{2}{y}+\frac{3}{z}= 1$

2000 Moldova Team Selection Test, 5

Let $(F_n)_{n\in\mathbb{N}}$ be the Fibonacci sequence difined as $F_0=F_1=1, F_{n+2}=F_{n+1}+F_n, \forall n\in\mathbb{N}$. Show that for every nonnegative integer $r$ there is a term in the Fibonacci sequence that is divided by $r$.

2023 Iran MO (2nd Round), P2

2. Prove that for any $2\le n \in \mathbb{N}$ there exists positive integers $a_1,a_2,\cdots,a_n$ such that $\forall i\neq j: \text{gcd}(a_i,a_j) = 1$ and $\forall i: a_i \ge 1402$ and the given relation holds. $$[\frac{a_1}{a_2}]+[\frac{a_2}{a_3}]+\cdots+[\frac{a_n}{a_1}] = [\frac{a_2}{a_1}]+[\frac{a_3}{a_2}]+\cdots+[\frac{a_1}{a_n}]$$

2015 Lusophon Mathematical Olympiad, 2

Determine all ten-digit numbers whose decimal $\overline{a_0a_1a_2a_3a_4a_5a_6a_7a_8a_9}$ is given by such that for each integer $j$ with $0\le j \le 9, a_j$ is equal to the number of digits equal to $j$ in this representation. That is: the first digit is equal to the amount of "$0$" in the writing of that number, the second digit is equal to the amount of "$1$" in the writing of that number, the third digit is equal to the amount of "$2$" in the writing of that number, ... , the tenth digit is equal to the number of "$9$" in the writing of that number.

2024 Moldova Team Selection Test, 1

If $ \frac{a }{b}+ \frac{b}{c}+ \frac{c}{a}$ is integer. show that $ abc$ is perfect cube.

VI Soros Olympiad 1999 - 2000 (Russia), 10.5

For what values of $k\ge2$ can the set of natural numbers be colored in $k$ colors in such a way that it contains no single - color infinite arithmetic progression, but for any two colors there is a progression whose members are each colored in one of these two colors?

2020 Peru Iberoamerican Team Selection Test, P2

Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ that satisfy the conditions: $i) f(f(x)) = xf(x) - x^2 + 2,\forall x\in\mathbb{Z}$ $ii) f$ takes all integer values

2017 Iran MO (3rd round), 1

Let $n$ be a positive integer. Consider prime numbers $p_1,\dots ,p_k$. Let $a_1,\dots,a_m$ be all positive integers less than $n$ such that are not divisible by $p_i$ for all $1 \le i \le n$. Prove that if $m\ge 2$ then $$\frac{1}{a_1}+\dots+\frac{1}{a_m}$$ is not an integer.

1999 BAMO, 1

Prove that among any $12$ consecutive positive integers there is at least one which is smaller than the sum of its proper divisors. (The proper divisors of a positive integer n are all positive integers other than $1$ and $n$ which divide $n$. For example, the proper divisors of $14$ are $2$ and $7$.)

1998 All-Russian Olympiad, 3

Let $S(x)$ denote the sum of the decimal digits of $x$. Do there exist natural numbers $a,b,c$ such that \[ S(a+b)<5, \quad S(b+c)<5, \quad S(c+a)<5, \quad S(a+b+c)> 50? \]

2011 IFYM, Sozopol, 2

Let $k>1$ and $n$ be natural numbers and $p=\frac{((n+1)(n+2)…(n+k))}{k!}-1$. Prove that, if $p$ is prime, then $n|k!$.

2013 Princeton University Math Competition, 8

Triangle $A_1B_1C_1$ is an equilateral triangle with sidelength $1$. For each $n>1$, we construct triangle $A_nB_nC_n$ from $A_{n-1}B_{n-1}C_{n-1}$ according to the following rule: $A_n,B_n,C_n$ are points on segments $A_{n-1}B_{n-1},B_{n-1}C_{n-1},C_{n-1}A_{n-1}$ respectively, and satisfy the following: \[\dfrac{A_{n-1}A_n}{A_nB_{n-1}}=\dfrac{B_{n-1}B_n}{B_nC_{n-1}}=\dfrac{C_{n-1}C_n}{C_nA_{n-1}}=\dfrac1{n-1}\] So for example, $A_2B_2C_2$ is formed by taking the midpoints of the sides of $A_1B_1C_1$. Now, we can write $\tfrac{|A_5B_5C_5|}{|A_1B_1C_1|}=\tfrac mn$ where $m$ and $n$ are relatively prime integers. Find $m+n$. (For a triangle $\triangle ABC$, $|ABC|$ denotes its area.)

2010 Purple Comet Problems, 1

Let $x$ satisfy $(6x + 7) + (8x + 9) = (10 + 11x) + (12 + 13x).$ There are relatively prime positive integers so that $x = -\tfrac{m}{n}$. Find $m + n.$

2020 CHMMC Winter (2020-21), 3

[i](6 pts)[/i] Find all positive integers $n \ge 3$ such that there exists a permutation $a_{1}, a_{2}, \dots, a_{n}$ of $1, 2, \dots, n$ such that $a_{1}, 2a_{2}, \dots, na_{n}$ can be rearranged into an arithmetic progression.

2011 Saudi Arabia BMO TST, 2

For each positive integer $n$ let the set $A_n$ consist of all numbers $\pm 1 \pm 2 \pm ...\pm n$. For example, $$A_1 = \{-1,1\}, A_2 = \{ -3 ,-1 ,1 ,3 \} , A_3 = \{ -6 ,-4 ,-2 ,0 ,2 ,4 ,6 \}.$$ Find the number of elements in $A_n$ .

2006 Princeton University Math Competition, 2

Professor Conway collects a total of $58$ midterms from the two sections of his introductory linear algebra course. He notices that the number of midterms from the smaller section is equal to the product of the digits of the number of midterms from his larger section. Assuming that every student handed in a midterm, how many students are there in the smaller section?