Found problems: 15460
2014 Contests, 3
Given are 100 different positive integers. We call a pair of numbers [i]good[/i] if the ratio of these numbers is either 2 or 3. What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.)
[i]Proposed by Alexander S. Golovanov, Russia[/i]
2020 Durer Math Competition Finals, 4
We have a positive integer $n$, whose sum of digits is $100$ . If the sum of digits of $44n$ is $800$ then what is the sum of digits of $3n$?
1991 Brazil National Olympiad, 4
Show that there exists $n>2$ such that $1991 | 1999 \ldots 91$ (with $n$ 9's).
Mid-Michigan MO, Grades 10-12, 2002
[b]p1.[/b] Find all integer solutions of the equation $a^2 - b^2 = 2002$.
[b]p2.[/b] Prove that the disks drawn on the sides of a convex quadrilateral as on diameters cover this quadrilateral.
[b]p3.[/b] $30$ students from one school came to Mathematical Olympiad. In how many different ways is it possible to place them in four rooms?
[b]p4.[/b] A $12$ liter container is filled with gasoline. How to split it in two equal parts using two empty $5$ and $8$ liter containers?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 China Girls Math Olympiad, 4
Let $p,q$ be primes, where $p>q$. Define $t=\gcd(p!-1,q!-1)$. Prove that $t\le p^{\frac{p}{3}}$.
1998 Tournament Of Towns, 1
(a) Prove that for any two positive integers a and b the equation $lcm (a, a + 5) = lcm (b, b + 5)$ implies $a = b$.
(b) Is it possible that $lcm (a, b) = lcm (a + c, b + c)$ for positive integers $a, b$ and $c$?
(A Shapovalov)
PS. part (a) for Juniors, both part for Seniors
2000 Junior Balkan Team Selection Tests - Romania, 1
For each $ k\in\mathbb{N} ,k\le 2000, $ Let $ r_k $ be the remainder of the division of $ k $ by $ 4, $ and $ r'_k $ be the remainder of the division of $ k $ by $ 3. $ Prove that there is an unique $ m\in\mathbb{N} ,m\le 1999 $ such that
$$ r_1+r_2+\cdots +r_m=r'_{m+1} +r'_{m+2} +\cdots r'_{2000} . $$
[i]Mircea Fianu[/i]
2011 Dutch BxMO TST, 4
Let $n \ge 2$ be an integer. Let $a$ be the greatest positive integer such that $2^a | 5^n - 3^n$.
Let $b$ be the greatest positive integer such that $2^b \le n$. Prove that $a \le b + 3$.
2022-IMOC, N2
For a positive integer $n$, define $f(x)$ to be the smallest positive integer $x$ satisfying the following conditions: there exists a positive integer $k$ and $k$ distinct positive integers $n=a_0<a_1<a_2<\cdots<a_{k-1}=x$ such that $a_0a_1\cdots a_{k-1}$ is a perfect square. Find the smallest real number $c$ such that there exists a positive integer $N$ such that for all $n>N$ we have $f(n)\leq cn$.
[i]Proposed by Fysty and amano_hina[/i]
2003 Bosnia and Herzegovina Junior BMO TST, 3
Let $a, b, c$ be integers such that the number $a^2 +b^2 +c^2$ is divisible by $6$ and the number $ab + bc + ca$ is divisible by $3$. Prove that the number $a^3 + b^3 + c^3$ is divisible by $6$.
2003 Chile National Olympiad, 7
Juan found an easy (but wrong) way to simplify fractions. He proposes to simplify a fraction $\frac{M}{N}$ , where $M <N$ are two natural numbers, erase simultaneously the equal digits in the numerator and denominator. For instance, $\frac{12356}{5789}$ transforms after simplification of Juan in $\frac{126}{789}$. Find out if there is at least one fraction $\frac{M}{N}$, with $10 <M <N <100$ for which this method gives a correct result.
1997 Flanders Math Olympiad, 1
Write the number 1997 as the sum of positive integers for which the product is maximal, and prove there's no better solution.
2005 IMO Shortlist, 2
Let $a_1,a_2,\ldots$ be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer $n$ the numbers $a_1,a_2,\ldots,a_n$ leave $n$ different remainders upon division by $n$.
Prove that every integer occurs exactly once in the sequence $a_1,a_2,\ldots$.
2014 IMC, 4
Let $n>6$ be a perfect number, and let $n=p_1^{e_1}\cdot\cdot\cdot p_k^{e_k}$ be its prime factorisation with $1<p_1<\dots <p_k$. Prove that $e_1$ is an even number.
A number $n$ is [i]perfect[/i] if $s(n)=2n$, where $s(n)$ is the sum of the divisors of $n$.
(Proposed by Javier Rodrigo, Universidad Pontificia Comillas)
2005 Germany Team Selection Test, 1
Prove that there doesn't exist any positive integer $n$ such that $2n^2+1,3n^2+1$ and $6n^2+1$ are perfect squares.
2014 Dutch IMO TST, 4
Determine all pairs $(p, q)$ of primes for which $p^{q+1}+q^{p+1}$ is a perfect square.
2021 Belarusian National Olympiad, 9.3
Find all positive integers $n$ for which $$S(n^2)+S(n)^2=n$$ where $S(m)$ denotes the sum of digits of $m$.
1993 Balkan MO, 4
Let $p$ be a prime and $m \geq 2$ be an integer. Prove that the equation \[ \frac{ x^p + y^p } 2 = \left( \frac{ x+y } 2 \right)^m \] has a positive integer solution $(x, y) \neq (1, 1)$ if and only if $m = p$.
[i]Romania[/i]
2017 ABMC, Accuracy
[b]p1.[/b] Len's Spanish class has four tests in the first term. Len scores $72$, $81$, and $78$ on the first three tests. If Len wants to have an 80 average for the term, what is the minimum score he needs on the last test?
[b]p2.[/b] In $1824$, the Electoral College had $261$ members. Andrew Jackson won $99$ Electoral College votes and John Quincy Adams won $84$ votes. A plurality occurs when no candidate has more than $50\%$ of the votes. Should a plurality occur, the vote goes to the House of Representatives to break the tie. How many more votes would Jackson have needed so that a plurality would not have occurred?
[b]p3.[/b] $\frac12 + \frac16 + \frac{1}{12} + \frac{1}{20} + \frac{1}{30}= 1 - \frac{1}{n}$. Find $n$.
[b]p4.[/b] How many ways are there to sit Samuel, Esun, Johnny, and Prat in a row of $4$ chairs if Prat and Johnny refuse to sit on an end?
[b]p5.[/b] Find an ordered quadruple $(w, x, y, z)$ that satisfies the following: $$3^w + 3^x + 3^y = 3^z$$ where $w + x + y + z = 2017$.
[b]p6.[/b] In rectangle $ABCD$, $E$ is the midpoint of $CD$. If $AB = 6$ inches and $AE = 6$ inches, what is the length of $AC$?
[b]p7.[/b] Call an integer interesting if the integer is divisible by the sum of its digits. For example, $27$ is divisible by $2 + 7 = 9$, so $27$ is interesting. How many $2$-digit interesting integers are there?
[b]p8.[/b] Let $a\#b = \frac{a^3-b^3}{a-b}$ . If $a, b, c$ are the roots of the polynomial $x^3 + 2x^2 + 3x + 4$, what is the value of $a\#b + b\#c + c\#a$?
[b]p9.[/b] Akshay and Gowri are examining a strange chessboard. Suppose $3$ distinct rooks are placed into the following chessboard. Find the number of ways that one can place these rooks so that they don't attack each other. Note that two rooks are considered attacking each other if they are in the same row or the same column.
[img]https://cdn.artofproblemsolving.com/attachments/f/1/70f7d68c44a7a69eb13ce12291c0600d11027c.png[/img]
[b]p10.[/b] The Earth is a very large sphere. Richard and Allen have a large spherical model of Earth, and they would like to (for some strange reason) cut the sphere up with planar cuts. If each cut intersects the sphere, and Allen holds the sphere together so it does not fall apart after each cut, what is the maximum number of pieces the sphere can be cut into after $6$ cuts?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Saudi Arabia BMO + EGMO TST, p3
We consider all partitions of a positive integer n into a sum of (nonnegative integer) exponents of $2$ (i.e. $1$, $2$, $4$, $8$ , $ . . .$ ). A number in the sum is allowed to repeat an arbitrary number of times (e.g. $7 = 2 + 2 + 1 + 1 + 1$) and two partitions differing only in the order of summands are considered to be equal (e.g. $8 = 4 + 2 + 1 + 1$ and $8 = 1 + 2 + 1 + 4$ are regarded to be the same partition). Let $E(n)$ be the number of partitions in which an even number of exponents appear an odd number of times and $O(n)$ the number of partitions in which an odd number of exponents appear an odd number of times. For example, for $n = 5$ partitions counted in $E(n)$ are $5 = 4 + 1$ and $5 = 2 + 1 + 1 + 1$, whereas partitions counted in O(n) are $5 = 2 + 2 + 1$ and $5 = 1 + 1 + 1 + 1 + 1$, hence $E(5) = O(5) = 2$. Find $E(n) - O(n)$ as a function of $n$.
2010 China Team Selection Test, 2
Prove that there exists a sequence of unbounded positive integers $a_1\leq a_2\leq a_3\leq\cdots$, such that there exists a positive integer $M$ with the following property: for any integer $n\geq M$, if $n+1$ is not prime, then any prime divisor of $n!+1$ is greater than $n+a_n$.
2019 Romania Team Selection Test, 1
Prove that there exists an integer $n$, $n\geq 2002$, and $n$ distinct positive integers $a_1,a_2,\ldots,a_n$ such that the number $N= a_1^2a_2^2\cdots a_n^2 - 4(a_1^2+a_2^2+\cdots + a_n^2) $ is a perfect square.
1985 ITAMO, 13
The numbers in the sequence 101, 104, 109, 116, $\dots$ are of the form $a_n = 100 + n^2$, where $n = 1$, 2, 3, $\dots$. For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n + 1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.
DMM Individual Rounds, 2003
[b]p1.[/b] If Suzie has $6$ coins worth $23$ cents, how many nickels does she have?
[b]p2.[/b] Let $a * b = (a - b)/(a + b)$. If $8 * (2 * x) = 4/3$, what is $x$?
[b]p3.[/b] How many digits does $x = 100000025^2 - 99999975^2$ have when written in decimal form?
[b]p4.[/b] A paperboy’s route covers $8$ consecutive houses along a road. He does not necessarily deliver to all the houses every day, but he always traverses the road in the same direction, and he takes care never to skip over $2$ consecutive houses. How many possible routes can he take?
[b]p5.[/b] A regular $12$-gon is inscribed in a circle of radius $5$. What is the sum of the squares of the distances from any one fixed vertex to all the others?
[b]p6.[/b] In triangle $ABC$, let $D, E$ be points on $AB$, $AC$, respectively, and let $BE$ and $CD$ meet at point $P$. If the areas of triangles $ADE$, $BPD$, and $CEP$ are $5$, $8$, and $3$, respectively, find the area of triangle ABC.
[b]p7.[/b] Bob has $11$ socks in his drawer: $3$ different matched pairs, and $5$ socks that don’t match with any others. Suppose he pulls socks from the drawer one at a time until he manages to get a matched pair. What is the probability he will need to draw exactly $9$ socks?
[b]p8.[/b] Consider the unit cube $ABCDEFGH$. The triangle bound to $A$ is the triangle formed by the $3$ vertices of the cube adjacent to $A$ (and similarly for the other vertices of the cube). Suppose we slice a knife through each of the $8$ triangles bound to vertices of the cube. What is the volume of the remaining solid that contains the former center of the cube?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2001 Romania National Olympiad, 4
Determine the ordered systems $(x,y,z)$ of positive rational numbers for which $x+\frac{1}{y},y+\frac{1}{z}$ and $z+\frac{1}{x}$ are integers.