Found problems: 15460
2012 Purple Comet Problems, 29
Let $A=\{1, 3, 5, 7, 9\}$ and $B=\{2, 4, 6, 8, 10\}$. Let $f$ be a randomly chosen function from the set $A\cup B$ into itself. There are relatively prime positive integers $m$ and $n$ such that $\frac{m}{n}$ is the probablity that $f$ is a one-to-one function on $A\cup B$ given that it maps $A$ one-to-one into $A\cup B$ and it maps $B$ one-to-one into $A\cup B$. Find $m+n$.
2015 Latvia Baltic Way TST, 8
Given a fixed rational number $q$. Let's call a number $x$ [i]charismatic [/i] if we can find a natural number $n$ and integers $a_1, a_2,.., a_n$ such that
$$x = (q + 1)^{a_1} \cdot (q + 2)^{a_2} \cdot ... \cdot(q + n)^{a_n} .$$
i) Prove that one can find a $q$ such that all positive rational numbers are charismatic.
ii) Is it true that for all $q$, if the number $x$ is charismatic, then $x + 1$ is also charismatic?
2020 Swedish Mathematical Competition, 1
How many of the numbers $1\cdot 2\cdot 3$, $2\cdot 3\cdot 4$,..., $2020 \cdot 2021 \cdot 2022$ are divisible by $2020$?
1989 Czech And Slovak Olympiad IIIA, 3
For given coprime numbers $p > q > 0$, find all pairs of real numbers $c,d$ such that for the sets
$$A = \left\{ \left[n\frac{p}{q}\right] , n \in N \right\} \ \ and \ \ B = \{[cn + d], n \in N\}$$
where $A \cap B = \emptyset$, $A \cup B = N$, where $N = \{1, 2, 3, ...\}$ is the set of all natural numbers.
2021 IMO, 1
Let $n \geqslant 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.
DMM Team Rounds, 2021
[b]p1. [/b] In basketball, teams can score $1, 2$, or $3$ points each time. Suppose that Duke basketball have scored $8$ points so far. What is the total number of possible ways (ordered) that they have scored?
For example, $(1, 2, 2, 2, 1)$,$(1, 1, 2, 2, 2)$ are two different ways.
[b]p2.[/b] All the positive integers that are coprime to $2021$ are grouped in increasing order, such that the nth group contains $2n - 1$ numbers. Hence the first three groups are $\{1\}$, $\{2, 3, 4\}$, $\{5, 6, 7, 8, 9\}$. Suppose that $2022$ belongs to the $k$th group. Find $k$.
[b]p3.[/b] Let $A = (0, 0)$ and $B = (3, 0)$ be points in the Cartesian plane. If $R$ is the set of all points $X$ such that $\angle AXB \ge 60^o$ (all angles are between $0^o$ and $180^o$), find the integer that is closest to the area of $R$.
[b]p4.[/b] What is the smallest positive integer greater than $9$ such that when its left-most digit is erased, the resulting number is one twenty-ninth of the original number?
[b]p5. [/b] Jonathan is operating a projector in the cartesian plane. He sets up $2$ infinitely long mirrors represented by the lines $y = \tan(15^o)x$ and $y = 0$, and he places the projector at $(1, 0)$ pointed perpendicularly to the $x$-axis in the positive $y$ direction. Jonathan furthermore places a screen on one of the mirrors such that light from the projector reflects off the mirrors a total of three times before hitting the screen. Suppose that the coordinates of the screen is $(a, b)$. Find $10a^2 + 5b^2$.
[b]p6.[/b] Dr Kraines has a cube of size $5 \times 5 \times 5$, which is made from $5^3$ unit cubes. He then decides to choose $m$ unit cubes that have an outside face such that any two different cubes don’t share a common vertex. What is the maximum value of $m$?
[b]p7.[/b] Let $a_n = \tan^{-1}(n)$ for all positive integers $n$. Suppose that $$\sum_{k=4}^{\infty}(-1)^{\lfloor \frac{k}{2} \rfloor +1} \tan(2a_k)$$ is equals to $a/b$ , where $a, b$ are relatively prime. Find $a + b$.
[b]p8.[/b] Rishabh needs to settle some debts. He owes $90$ people and he must pay \$ $(101050 + n)$ to the $n$th person where $1 \le n \le 90$. Rishabh can withdraw from his account as many coins of values \$ $2021$ and \$ $x$ for some fixed positive integer $x$ as is necessary to pay these debts. Find the sum of the four least values of $x$ so that there exists a person to whom Rishabh is unable to pay the exact amount owed using coins.
[b]p9.[/b] A frog starts at $(1, 1)$. Every second, if the frog is at point $(x, y)$, it moves to $(x + 1, y)$ with probability $\frac{x}{x+y}$ and moves to $(x, y + 1)$ with probability $\frac{y}{x+y}$ . The frog stops moving when its $y$ coordinate is $10$. Suppose the probability that when the frog stops its $x$-coordinate is strictly less than $16$, is given by $m/n$ where $m, n$ are positive integers that are relatively prime. Find $m + n.$
[b]p10.[/b] In the triangle $ABC$, $AB = 585$, $BC = 520$, $CA = 455$. Define $X, Y$ to be points on the segment $BC$. Let $Z \ne A$ be the intersection of $AY$ with the circumcircle of $ABC$. Suppose that $XZ$ is parallel to $AC$ and the circumcircle of $XYZ$ is tangent to the circumcircle of $ABC$ at $Z$. Find the length of $XY$ .
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1992 IMO Longlists, 51
Let $ f, g$ and $ a$ be polynomials with real coefficients, $ f$ and $ g$ in one variable and $ a$ in two variables. Suppose
\[ f(x) \minus{} f(y) \equal{} a(x, y)(g(x) \minus{} g(y)) \forall x,y \in \mathbb{R}\]
Prove that there exists a polynomial $ h$ with $ f(x) \equal{} h(g(x)) \text{ } \forall x \in \mathbb{R}.$
III Soros Olympiad 1996 - 97 (Russia), 10.4
Find natural $a, b, c, d$ that satisfy the system
$$\begin{cases} ab+cd=34
\\ ac-bd=19
\end{cases}$$
2019 Romanian Masters In Mathematics, 1
Amy and Bob play the game. At the beginning, Amy writes down a positive integer on the board. Then the players take moves in turn, Bob moves first. On any move of his, Bob replaces the number $n$ on the blackboard with a number of the form $n-a^2$, where $a$ is a positive integer. On any move of hers, Amy replaces the number $n$ on the blackboard with a number of the form $n^k$, where $k$ is a positive integer. Bob wins if the number on the board becomes zero.
Can Amy prevent Bob’s win?
[i]Maxim Didin, Russia[/i]
2014 NIMO Summer Contest, 11
Consider real numbers $A$, $B$, \dots, $Z$ such that \[
EVIL = \frac{5}{31}, \;
LOVE = \frac{6}{29}, \text{ and }
IMO = \frac{7}{3}.
\] If $OMO = \tfrac mn$ for relatively prime positive integers $m$ and $n$, find the value of $m+n$.
[i]Proposed by Evan Chen[/i]
2012 India IMO Training Camp, 2
Let $0<x<y<z<p$ be integers where $p$ is a prime. Prove that the following statements are equivalent:
$(a) x^3\equiv y^3\pmod p\text{ and }x^3\equiv z^3\pmod p$
$(b) y^2\equiv zx\pmod p\text{ and }z^2\equiv xy\pmod p$
2013 Tournament of Towns, 3
Denote by $[a, b]$ the least common multiple of $a$ and $b$.
Let $n$ be a positive integer such that $[n, n + 1] > [n, n + 2] >...> [n, n + 35]$. Prove that $[n, n + 35] > [n,n + 36]$.
2018 Moscow Mathematical Olympiad, 4
Are there natural solution of $$a^3+b^3=11^{2018}$$ ?
2017 Costa Rica - Final Round, N2
A positive integer is said to be "nefelibata" if, upon taking its last digit and placing it as the first digit, keeping the order of all the remaining digits intact (for example, 312 -> 231), the resulting number is exactly double the original number. Find the smallest possible nefelibata number.
2021 Science ON Seniors, 2
Find all pairs $(p,q)$ of prime numbers such that
$$p^q-4~|~q^p-1.$$
[i](Vlad Robu)[/i]
1996 Bulgaria National Olympiad, 1
Find all prime numbers $p,q$ for which $pq$ divides $(5^p-2^p)(5^q-2^q)$.
2011 Princeton University Math Competition, A2 / B4
What is the largest positive integer $n < 1000$ for which there is a positive integer $m$ satisfying \[\text{lcm}(m,n) = 3m \times \gcd(m,n)?\]
2013 JBMO Shortlist, 4
A rectangle in xy Cartesian System is called latticed if all it's vertices have integer coordinates.
a) Find a latticed rectangle of area $2013$, whose sides are not parallel to the axes.
b) Show that if a latticed rectangle has area $2011$, then their sides are parallel to the axes.
2008 Moldova Team Selection Test, 1
Let $ p$ be a prime number. Solve in $ \mathbb{N}_0\times\mathbb{N}_0$ the equation $ x^3\plus{}y^3\minus{}3xy\equal{}p\minus{}1$.
1970 Bulgaria National Olympiad, Problem 1
Find all natural numbers $a>1$, with the property that every prime divisor of $a^6-1$ divides also at least one of the numbers $a^3-1$, $a^2-1$.
[i]K. Dochev[/i]
2018 ELMO Shortlist, 4
Say a positive integer $n>1$ is $d$-coverable if for each non-empty subset $S\subseteq \{0, 1, \ldots, n-1\}$, there exists a polynomial $P$ with integer coefficients and degree at most $d$ such that $S$ is exactly the set of residues modulo $n$ that $P$ attains as it ranges over the integers. For each $n$, find the smallest $d$ such that $n$ is $d$-coverable, or prove no such $d$ exists.
[i]Proposed by Carl Schildkraut[/i]
DMM Individual Rounds, 2009
[b]p1.[/b] Let $p > 5$ be a prime. It is known that the average of all of the prime numbers that are at least $5$ and at most $p$ is $12$. Find $p$.
[b]p2.[/b] The numbers $1, 2,..., n$ are written down in random order. What is the probability that $n-1$ and $n$ are written next to each other? (Give your answer in term of $n$.)
[b]p3.[/b] The Duke Blue Devils are playing a basketball game at home against the UNC Tar Heels. The Tar Heels score $N$ points and the Blue Devils score $M$ points, where $1 < M,N < 100$. The first digit of $N$ is $a$ and the second digit of $N$ is $b$. It is known that $N = a+b^2$. The first digit of $M$ is $b$ and the second digit of $M$ is $a$. By how many points do the Blue Devils win?
[b]p4.[/b] Let $P(x)$ be a polynomial with integer coefficients. It is known that $P(x)$ gives a remainder of $1$ upon polynomial division by $x + 1$ and a remainder of $2$ upon polynomial division by $x + 2$. Find the remainder when $P(x)$ is divided by $(x + 1)(x + 2)$.
[b]p5.[/b] Dracula starts at the point $(0,9)$ in the plane. Dracula has to pick up buckets of blood from three rivers, in the following order: the Red River, which is the line $y = 10$; the Maroon River, which is the line $y = 0$; and the Slightly Crimson River, which is the line $x = 10$. After visiting all three rivers, Dracula must then bring the buckets of blood to a castle located at $(8,5)$. What is the shortest distance that Dracula can walk to accomplish this goal?
[b]p6.[/b] Thirteen hungry zombies are sitting at a circular table at a restaurant. They have five identical plates of zombie food. Each plate is either in front of a zombie or between two zombies. If a plate is in front of a zombie, that zombie and both of its neighbors can reach the plate. If a plate is between two zombies, only those two zombies may reach it. In how many ways can we arrange the plates of food around the circle so that each zombie can reach exactly one plate of food? (All zombies are distinct.)
[b]p7.[/b] Let $R_I$ , $R_{II}$ ,$R_{III}$ ,$R_{IV}$ be areas of the elliptical region $$\frac{(x - 10)^2}{10}+ \frac{(y-31)^2}{31} \le 2009$$ that lie in the first, second, third, and fourth quadrants, respectively. Find $R_I -R_{II} +R_{III} -R_{IV}$ .
[b]p8.[/b] Let $r_1, r_2, r_3$ be the three (not necessarily distinct) solutions to the equation $x^3+4x^2-ax+1 = 0$. If $a$ can be any real number, find the minimum possible value of
$$\left(r_1 +\frac{1}{r_1} \right)^2+ \left(r_2 +\frac{1}{r_2} \right)^2+ \left(r_3 +\frac{1}{r_3} \right)^2$$
[b]p9.[/b] Let $n$ be a positive integer. There exist positive integers $1 = a_1 < a_2 <... < a_n = 2009$ such that the average of any $n - 1$ of elements of $\{a_1, a_2,..., a_n\}$ is a positive integer. Find the maximum possible value of $n$.
[b]p10.[/b] Let $A(0) = (2, 7, 8)$ be an ordered triple. For each $n$, construct $A(n)$ from $A(n - 1)$ by replacing the $k$th position in $A(n - 1)$ by the average (arithmetic mean) of all entries in $A(n - 1)$, where $k \equiv n$ (mod $3$) and $1 \le k \le 3$. For example, $A(1) = \left( \frac{17}{3} , 7, 8 \right)$ and $A(2) = \left( \frac{17}{3} , \frac{62}{9}, 8\right)$. It is known that all entries converge to the same number $N$. Find the value of $N$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Romania Team Selection Test, P2
Find all positive integers, such that there exist positive integers $a, b, c$, satisfying $\gcd(a, b, c)=1$ and $n=\gcd(ab+c, ac-b)=a+b+c$.
2004 Pan African, 1
Do there exist positive integers $m$ and $n$ such that:
\[ 3n^2+3n+7=m^3 \]
2013 AIME Problems, 10
Given a circle of radius $\sqrt{13}$, let $A$ be a point at a distance $4 + \sqrt{13}$ from the center $O$ of the circle. Let $B$ be the point on the circle nearest to point $A$. A line passing through the point $A$ intersects the circle at points $K$ and $L$. The maximum possible area for $\triangle BKL$ can be written in the form $\tfrac{a-b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers, $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.