This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2005 iTest, 2

When $1^0 + 2^1 + 3^2 + ...+ 100^{99}$ is divided by $5$, a remainder of $N$ is obtained such that $N$ is between $0$ and $4$ inclusive. Find $N$. [i](.1 point)[/i]

2016 PUMaC Team, 15

Compute the sum of all positive integers $n$ with the property that $x^n \equiv 1$ (mod $2016$) has $n$ solutions in $\{0, 1, 2, ... , 2015\}$.

2009 ISI B.Stat Entrance Exam, 10

Let $x_n$ be the $n$-th non-square positive integer. Thus $x_1=2, x_2=3, x_3=5, x_4=6,$ etc. For a positive real number $x$, denotes the integer closest to it by $\langle x\rangle$. If $x=m+0.5$, where $m$ is an integer, then define $\langle x\rangle=m$. For example, $\langle 1.2\rangle =1, \langle 2.8 \rangle =3, \langle 3.5\rangle =3$. Show that $x_n=n+\langle \sqrt{n}\rangle$

PEN O Problems, 13

Let $n$ and $k$ be given relatively prime natural numbers, $k<n.$ Each number in the set $M=\{1,2,...,n-1\}$ is colored either blue or white. It is given that [list] [*] for each $i\in M,$ both $i$ and $n-i$ have the same color, [*] for each $i\in M,i\ne k,$ both $i$ and $\left \vert i-k \right \vert $ have the same color. [/list] Prove that all numbers in $M$ have the same color.

LMT Guts Rounds, 2018 F

[u]Round 5[/u] [b]p13.[/b] Express the number $3024_8$ in base $2$. [b]p14.[/b] $\vartriangle ABC$ has a perimeter of $10$ and has $AB = 3$ and $\angle C$ has a measure of $60^o$. What is the maximum area of the triangle? [b]p15.[/b] A weighted coin comes up as heads $30\%$ of the time and tails $70\%$ of the time. If I flip the coin $25$ times, howmany tails am I expected to flip? [u]Round 6[/u] [b]p16.[/b] A rectangular box with side lengths $7$, $11$, and $13$ is lined with reflective mirrors, and has edges aligned with the coordinate axes. A laser is shot from a corner of the box in the direction of the line $x = y = z$. Find the distance traveled by the laser before hitting a corner of the box. [b]p17.[/b] The largest solution to $x^2 + \frac{49}{x^2}= 2018$ can be represented in the form $\sqrt{a}+\sqrt{b}$. Compute $a +b$. [b]p18.[/b] What is the expected number of black cards between the two jokers of a $54$ card deck? [u]Round 7[/u] p19. Compute ${6 \choose 0} \cdot 2^0 + {6 \choose 1} \cdot 2^1+ {6 \choose 2} \cdot 2^2+ ...+ {6 \choose 6} \cdot 2^6$. [b]p20.[/b] Define a sequence by $a_1 =5$, $a_{n+1} = a_n + 4 * n -1$ for $n\ge 1$. What is the value of $a_{1000}$? [b]p21.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B = 15^o$ and $\angle C = 30^o$. Let $D$ be the point such that $\vartriangle ADC$ is an isosceles right triangle where $D$ is in the opposite side from $A$ respect to $BC$ and $\angle DAC = 90^o$. Find the $\angle ADB$. [u]Round 8[/u] [b]p22.[/b] Say the answer to problem $24$ is $z$. Compute $gcd (z,7z +24).$ [b]p23.[/b] Say the answer to problem $22$ is $x$. If $x$ is $1$, write down $1$ for this question. Otherwise, compute $$\sum^{\infty}_{k=1} \frac{1}{x^k}$$ [b]p24.[/b] Say the answer to problem $23$ is $y$. Compute $$\left \lfloor \frac{y^2 +1}{y} \right \rfloor$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165983p28809209]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166045p28809814]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 China Girls Math Olympiad, 5

Proof that if $4$ numbers (not necessarily distinct) are picked from $\{1, 2, \cdots, 20\}$, one can pick $3$ numbers among them and can label these $3$ as $a, b, c$ such that $ax \equiv b \;(\bmod\; c)$ has integral solutions.

2014 Argentine National Olympiad, Level 3, 5.

An integer $n \geq 3$ is called [i]special[/i] if it does not divide $\left ( n-1 \right )!\left ( 1+\frac{1}{2}+\cdot \cdot \cdot +\frac{1}{n-1} \right )$. Find all special numbers $n$ such that $10 \leq n \leq 100$.

2005 Postal Coaching, 4

Let $m,n$ be natural numbers and let $d = gcd(m,n)$. Let $x = 2^{m} -1$ and $y= 2^n +1$ (a) If $\frac{m}{d}$ is odd, prove that $gcd(x,y) = 1$ (b) If $\frac{m}{d}$ is even, Find $gcd(x,y)$

2019 Korea National Olympiad, 7

For prime $p\equiv 1\pmod{7} $, prove that there exists some positive integer $m$ such that $m^3+m^2-2m-1$ is a multiple of $p$.

2020 Thailand Mathematical Olympiad, 1

Show that $\varphi(2n)\mid n!$ for all positive integer $n$.

1982 IMO Longlists, 1

[b](a)[/b] Prove that $\frac{1}{n+1} \cdot \binom{2n}{n}$ is an integer for $n \geq 0.$ [b](b)[/b] Given a positive integer $k$, determine the smallest integer $C_k$ with the property that $\frac{C_k}{n+k+1} \cdot \binom{2n}{n}$ is an integer for all $n \geq k.$

2022 Dutch BxMO TST, 1

Find all functions $f : Z_{>0} \to Z_{>0}$ for which $f(n) | f(m) - n$ if and only if $n | m$ for all natural numbers $m$ and $n$.

2017 ELMO Shortlist, 2

An integer $n>2$ is called [i]tasty[/i] if for every ordered pair of positive integers $(a,b)$ with $a+b=n,$ at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers? [i]Proposed by Vincent Huang[/i]

2010 Contests, 2

Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$. [i]Evan O' Dorney.[/i]

1999 Italy TST, 1

Prove that for any prime number $p$ the equation $2^p+3^p=a^n$ has no solution $(a,n)$ in integers greater than $1$.

2021 Bangladeshi National Mathematical Olympiad, 1

How many ordered pairs of integers $(m,n)$ are there such that $m$ and $n$ are the legs of a right triangle with an area equal to a prime number not exceeding $80$?

1999 Akdeniz University MO, 2

Find all $(x,y)$ real numbers pairs such that, $$x^7+y^7=x^4+y^4$$

2016 Iran MO (2nd Round), 6

Find all functions $f: \mathbb N \to \mathbb N$ Such that: 1.for all $x,y\in N$:$x+y|f(x)+f(y)$ 2.for all $x\geq 1395$:$x^3\geq 2f(x)$

2022 Dutch BxMO TST, 1

Find all functions $f : Z_{>0} \to Z_{>0}$ for which $f(n) | f(m) - n$ if and only if $n | m$ for all natural numbers $m$ and $n$.

2016 Federal Competition For Advanced Students, P1, 4

Determine all composite positive integers $n$ with the following property: If $1 = d_1 < d_2 < \cdots < d_k = n$ are all the positive divisors of $n$, then $$(d_2 - d_1) : (d_3 - d_2) : \cdots : (d_k - d_{k-1}) = 1:2: \cdots :(k-1)$$ (Walther Janous)

2018 Hanoi Open Mathematics Competitions, 13

For a positive integer $n$, let $S(n), P(n)$ denote the sum and the product of all the digits of $n$ respectively. 1) Find all values of n such that $n = P(n)$: 2) Determine all values of n such that $n = S(n) + P(n)$.

2014 Balkan MO Shortlist, N2

$\boxed{N2}$ Let $p$ be a prime numbers and $x_1,x_2,...,x_n$ be integers.Show that if \[x_1^n+x_2^n+...+x_p^n\equiv 0 \pmod{p}\] for all positive integers n then $x_1\equiv x_2 \equiv...\equiv x_p \pmod{p}.$

1999 Chile National Olympiad, 1

Pedrito's lucky number is $34117$. His friend Ramanujan points out that $34117 = 166^2 + 81^2 = 159^2 + 94^2$ and $166-159 = 7$, $94- 81 = 13$. Since his lucky number is large, Pedrito decides to find a smaller one, but that satisfies the same properties, that is, write in two different ways as the sum of squares of positive integers, and the difference of the first integers that occur in that sum is $7$ and in the difference between the seconds it gives $13$. Which is the least lucky number that Pedrito can find? Find a way to generate all the positive integers with the properties mentioned above.

2018 Estonia Team Selection Test, 6

We call a positive integer $n$ whose all digits are distinct [i]bright[/i], if either $n$ is a one-digit number or there exists a divisor of $n$ which can be obtained by omitting one digit of $n$ and which is bright itself. Find the largest bright positive integer. (We assume that numbers do not start with zero.)

2008 Iran MO (3rd Round), 1

Let $ k>1$ be an integer. Prove that there exists infinitely many natural numbers such as $ n$ such that: \[ n|1^n\plus{}2^n\plus{}\dots\plus{}k^n\]