This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

II Soros Olympiad 1995 - 96 (Russia), 10.8

A number from $1$ to $100$ is intended. In what is the smallest number of questions one can surely guess the intended number, if one is allowed to lie once? (Questions are asked like: “Does the intended number belong to such and such a numerical set?” The only possible answers are “Yes” and “No.”)

2016 Romanian Master of Mathematics Shortlist, N2

Given a prime $p$, prove that the sum $\sum_{k=1}^{\lfloor \frac{q}{p} \rfloor}{k^{p-1}}$ is not divisible by $q$ for all but finitely many primes $q$.

2019 Junior Balkan Team Selection Tests - Romania, 1

For a positive integer $m$ we denote by $\tau (m)$ the number of its positive divisors, and by $\sigma (m)$ their sum. Determine all positive integers $n$ for which $n \sqrt{ \tau (n) }\le \sigma(n)$

1998 Federal Competition For Advanced Students, Part 2, 2

Let $Q_n$ be the product of the squares of even numbers less than or equal to $n$ and $K_n$ equal to the product of cubes of odd numbers less than or equal to $n$. What is the highest power of $98$, that [b]a)[/b]$Q_n$, [b]b)[/b] $K_n$ or [b]c)[/b] $Q_nK_n$ divides? If one divides $Q_{98}K_{98}$ by the highest power of $98$, then one get a number $N$. By which power-of-two number is $N$ still divisible?

1984 Tournament Of Towns, (077) 2

A set of numbers $a_1, a_2 , . . . , a_{100}$ is obtained by rearranging the numbers $1 , 2,..., 100$ . Form the numbers $b_1=a_1$ $b_2= a_1 + a_2$ $b_3=a_1 + a_2 + a_3$ ... $b_{100}=a_1 + a_2 + ...+a_{100}$ Prove that among the remainders on dividing the numbers by $100 , 11$ of them are different . ( L . D . Kurlyandchik , Leningrad)

2016 CentroAmerican, 1

Find all positive integers $n$ that have 4 digits, all of them perfect squares, and such that $n$ is divisible by 2, 3, 5 and 7.

2022 USEMO, 5

Let $\tau(n)$ denote the number of positive integer divisors of a positive integer $n$ (for example, $\tau(2022) = 8$). Given a polynomial $P(X)$ with integer coefficients, we define a sequence $a_1, a_2,\ldots$ of nonnegative integers by setting \[a_n =\begin{cases}\gcd(P(n), \tau (P(n)))&\text{if }P(n) > 0\\0 &\text{if }P(n) \leq0\end{cases}\] for each positive integer $n$. We then say the sequence [i]has limit infinity[/i] if every integer occurs in this sequence only finitely many times (possibly not at all). Does there exist a choice of $P(X)$ for which the sequence $a_1$, $a_2$, . . . has limit infinity? [i]Jovan Vuković[/i]

2023 Moldova EGMO TST, 2

Show that for every integer $n\geq2$ there are two distinct powers of $n$ such that their sum is greater than $10^{2023}$ and their positive difference is divisible with $2023$.

2023 Mongolian Mathematical Olympiad, 3

Let $m$ be a positive integer. We say that a sequence of positive integers written on a circle is [i] good [/i], if the sum of any $m$ consecutive numbers on this circle is a power of $m$. 1. Let $n \geq 2$ be a positive integer. Prove that for any [i] good [/i] sequence with $mn$ numbers, we can remove $m$ numbers such that the remaining $mn-m$ numbers form a [i] good [/i] sequence. 2. Prove that in any [i] good [/i] sequence with $m^2$ numbers, we can always find a number that was repeated at least $m$ times in the sequence.

2009 China Western Mathematical Olympiad, 4

Prove that for every given positive integer $k$, there exist infinitely many $n$, such that $2^{n}+3^{n}-1, 2^{n}+3^{n}-2,\ldots, 2^{n}+3^{n}-k$ are all composite numbers.

2023 Israel National Olympiad, P2

The non-negative integers $x,y$ satisfy $\sqrt{x}+\sqrt{x+60}=\sqrt{y}$. Find the largest possible value for $x$.

2023 Purple Comet Problems, 15

A rectangle with integer side lengths has the property that its area minus $5$ times its perimeter equals $2023$. Find the minimum possible perimeter of this rectangle.

2003 Kazakhstan National Olympiad, 1

Find all natural numbers $ n$,such that there exist $ x_1,x_2,\dots,x_{n\plus{}1}\in\mathbb{N}$,such that $ \frac{1}{x_1^2}\plus{}\frac{1}{x_2^2}\plus{}\dots\plus{}\frac{1}{x_n^2}\equal{}\frac{n\plus{}1}{x_{n\plus{}1}^2}$.

2004 China National Olympiad, 3

Prove that every positive integer $n$, except a finite number of them, can be represented as a sum of $2004$ positive integers: $n=a_1+a_2+\cdots +a_{2004}$, where $1\le a_1<a_2<\cdots <a_{2004}$, and $a_i \mid a_{i+1}$ for all $1\le i\le 2003$. [i]Chen Yonggao[/i]

2019 Centers of Excellency of Suceava, 1

Prove that if a prime is the sum of four perfect squares then the product of two of these is equal to the product of the other two. [i]Gherghe Stoica[/i]

1996 Estonia National Olympiad, 4

Can the remainder of the division of a prime number $p> 30$ by $30$ be a composite?

2022 Spain Mathematical Olympiad, 6

Find all triples $(x,y,z)$ of positive integers, with $z>1$, satisfying simultaneously that \[x\text{ divides }y+1,\quad y\text{ divides }z-1,\quad z\text{ divides }x^2+1.\]

LMT Guts Rounds, 2018 F

[u]Round 1[/u] [b]p1.[/b] Evaluate the sum $1-2+3-...-208+209-210$. [b]p2.[/b] Tony has $14$ beige socks, $15$ blue socks, $6$ brown socks, $8$ blond socks and $7$ black socks. If Tony picks socks out randomly, how many socks does he have to pick in order to guarantee a pair of blue socks? [b]p3.[/b] The price of an item is increased by $25\%$, followed by an additional increase of $20\%$. What is the overall percentage increase? [u]Round 2[/u] [b]p4.[/b] A lamp post is $20$ feet high. How many feet away from the base of the post should a person who is $5$ feet tall stand in order to cast an 8-foot shadow? [b]p5.[/b] How many positive even two-digit integers are there that do not contain the digits $0$, $1$, $2$, $3$ or $4$? [b]p6.[/b] In four years, Jack will be twice as old as Jill. Three years ago, Jack was three times as old as Jill. How old is Jack? [u]Round 3[/u] [b]p7.[/b] Let $x \Delta y = x y^2 -2y$. Compute $20\Delta 18$. [u]p8.[/u] A spider crawls $14$ feet up a wall. If Cheenu is standing $6$ feet from the wall, and is $6$ feet tall, how far must the spider jump to land on his head? [b]p9.[/b] There are fourteen dogs with long nails and twenty dogs with long fur. If there are thirty dogs in total, and three do not have long fur or long nails, how many dogs have both long hair and long nails? [u]Round 4[/u] [b]p10.[/b] Exactly $420$ non-overlapping square tiles, each $1$ inch by $1$ inch, tesselate a rectangle. What is the least possible number of inches in the perimeter of the rectangle? [b]p11.[/b] John drives $100$ miles at fifty miles per hour to see a cat. After he discovers that there was no cat, he drives back at a speed of twenty miles per hour. What was John’s average speed in the round trip? [b]p12.[/b] What percent of the numbers $1,2,3,...,1000$ are divisible by exactly one of the numbers $4$ and $5$? PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3165992p28809294]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166045p28809814]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 India IMO Training Camp, 3

Let $\mathbb N$ denote the set of all natural numbers. Show that there exists two nonempty subsets $A$ and $B$ of $\mathbb N$ such that [list=1] [*] $A\cap B=\{1\};$ [*] every number in $\mathbb N$ can be expressed as the product of a number in $A$ and a number in $B$; [*] each prime number is a divisor of some number in $A$ and also some number in $B$; [*] one of the sets $A$ and $B$ has the following property: if the numbers in this set are written as $x_1<x_2<x_3<\cdots$, then for any given positive integer $M$ there exists $k\in \mathbb N$ such that $x_{k+1}-x_k\ge M$. [*] Each set has infinitely many composite numbers. [/list]

2018 IMO Shortlist, N4

Let $a_1$, $a_2$, $\ldots$ be an infinite sequence of positive integers. Suppose that there is an integer $N > 1$ such that, for each $n \geq N$, the number $$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$ is an integer. Prove that there is a positive integer $M$ such that $a_m = a_{m+1}$ for all $m \geq M$. [i]Proposed by Bayarmagnai Gombodorj, Mongolia[/i]

1993 Czech And Slovak Olympiad IIIA, 1

Find all natural numbers $n$ for which $7^n -1$ is divisible by $6^n -1$

2011 All-Russian Olympiad, 3

For positive integers $a>b>1$, define \[x_n = \frac {a^n-1}{b^n-1}\] Find the least $d$ such that for any $a,b$, the sequence $x_n$ does not contain $d$ consecutive prime numbers. [i]V. Senderov[/i]

2005 Georgia Team Selection Test, 7

Determine all positive integers $ n$, for which $ 2^{n\minus{}1}n\plus{}1$ is a perfect square.

2006 Iran MO (3rd Round), 4

$a,b,c,t$ are antural numbers and $k=c^{t}$ and $n=a^{k}-b^{k}$. a) Prove that if $k$ has at least $q$ different prime divisors, then $n$ has at least $qt$ different prime divisors. b)Prove that $\varphi(n)$ id divisible by $2^{\frac{t}{2}}$

2017 Germany, Landesrunde - Grade 11/12, 3

Find the smallest prime number that can not be written in the form $\left| 2^a-3^b \right|$ with non-negative integers $a,b$.