Found problems: 15460
1984 Spain Mathematical Olympiad, 2
Find the number of five-digit numbers whose square ends in the same five digits in the same order.
MMATHS Mathathon Rounds, 2021
[u]Round 6[/u]
[b]p16.[/b] Let $ABC$ be a triangle with $AB = 3$, $BC = 4$, and $CA = 5$. There exist two possible points $X$ on $CA$ such that if $Y$ and $Z$ are the feet of the perpendiculars from $X$ to $AB$ and $BC,$ respectively, then the area of triangle $XY Z$ is $1$. If the distance between those two possible points can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, and $c$ with $b$ squarefree and $gcd(a, c) = 1$, then find $a +b+ c$.
[b]p17.[/b] Let $f(n)$ be the number of orderings of $1,2, ... ,n$ such that each number is as most twice the number preceding it. Find the number of integers $k$ between $1$ and $50$, inclusive, such that $f (k)$ is a perfect square.
[b]p18.[/b] Suppose that $f$ is a function on the positive integers such that $f(p) = p$ for any prime p, and that $f (xy) = f(x) + f(y)$ for any positive integers $x$ and $y$. Define $g(n) = \sum_{k|n} f (k)$; that is, $g(n)$ is the sum of all $f(k)$ such that $k$ is a factor of $n$. For example, $g(6) = f(1) + 1(2) + f(3) + f(6)$. Find the sum of all composite $n$ between $50$ and $100$, inclusive, such that $g(n) = n$.
[u]Round 7[/u]
[b]p19.[/b] AJ is standing in the center of an equilateral triangle with vertices labelled $A$, $B$, and $C$. They begin by moving to one of the vertices and recording its label; afterwards, each minute, they move to a different vertex and record its label. Suppose that they record $21$ labels in total, including the initial one. Find the number of distinct possible ordered triples $(a, b, c)$, where a is the number of $A$'s they recorded, b is the number of $B$'s they recorded, and c is the number of $C$'s they recorded.
[b]p20.[/b] Let $S = \sum_{n=1}^{\infty} (1- \{(2 + \sqrt3)^n\})$, where $\{x\} = x - \lfloor x\rfloor$ , the fractional part of $x$. If $S =\frac{\sqrt{a} -b}{c}$ for positive integers $a, b, c$ with $a $ squarefree, find $a + b + c$.
[b]p21.[/b] Misaka likes coloring. For each square of a $1\times 8$ grid, she flips a fair coin and colors in the square if it lands on heads. Afterwards, Misaka places as many $1 \times 2$ dominos on the grid as possible such that both parts of each domino lie on uncolored squares and no dominos overlap. Given that the expected number of dominos that she places can be written as $\frac{a}{b}$, for positive integers $a$ and $b$ with $gcd(a, b) = 1$, find $a + b$.
PS. You should use hide for answers. Rounds 1-3 have been posted [url=https://artofproblemsolving.com/community/c4h3131401p28368159]here [/url] and 4-5 [url=https://artofproblemsolving.com/community/c4h3131422p28368457]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Polish Junior MO First Round, 3
Prime numbers $a, b, c$ are bigger that $3$. Show that $(a - b)(b - c)(c - a)$ is divisible by $48$.
2012 Federal Competition For Advanced Students, Part 2, 2
We define $N$ as the set of natural numbers $n<10^6$ with the following property:
There exists an integer exponent $k$ with $1\le k \le 43$, such that $2012|n^k-1$.
Find $|N|$.
1997 Singapore MO Open, 2
Observe that the number $4$ is such that $4 \choose k$ $= \frac{4!}{k!(4-k)!}$ divisible by $k + 1$ for $k = 0,1,2,3$. Find all the natural numbers $n$ between $50$ and $90$ such that $n \choose k$ is divisible by $k + 1$ for $k = 0,1,2,..., n - 1$. Justify your answers.
2015 Turkey Junior National Olympiad, 3
Find all pairs $(p,n)$ so that $p$ is a prime number, $n$ is a positive integer and \[p^3-2p^2+p+1=3^n \] holds.
2024 Regional Olympiad of Mexico West, 1
Initially, the numbers $1,3,4$ are written on a board. We do the following process repeatedly. Consider all of the numbers that can be obtained as the sum of $3$ distinct numbers written on the board and that aren't already written, and we write those numbers on the board. We repeat this process, until at a certain step, all of the numbers in that step are greater than $2024$. Determine all of the integers $1\leq k\leq 2024$ that were not written on the board.
2014 Peru IMO TST, 4
A positive integer is called lonely if the sum of the reciprocals of its positive divisors (including 1 and itself) is different from the sum of the reciprocals of the positive divisors of any positive integer.
a) Prove that every prime number is lonely.
b) Prove that there are infinitely many positive integers that are not lonely.
1982 Miklós Schweitzer, 4
Let \[ f(n)= \sum_{p|n , \;p^{\alpha} \leq n < p^{\alpha+1} \ } p^{\alpha} .\] Prove that \[ \limsup_{n \rightarrow \infty}f(n) \frac{ \log \log n}{n \log n}=1 .\]
[i]P. Erdos[/i]
2002 Tournament Of Towns, 1
There are many $a\times b$ rectangular cardboard pieces ($a,b\in\mathbb{N}$ such that $a<b$). It is given that by putting such pieces together without overlapping one can make $49\times 51$ rectangle, and $99\times 101$ rectangle. Can one uniquely determine $a,b$ from this?
2022 IFYM, Sozopol, 1
Let $p$ and $q$ be given prime numbers and $S$ be a subset of ${1,2,3,\dots ,p-2,p-1}$. Prove that the number of elements in the set
$A=\{ (x_1,x_2,…,x_q ):x_i\in S,\sum_{i=1}^q x_i \equiv 0(mod\: p)\}$
is multiple of $q$.
2012 Moldova Team Selection Test, 8
Let $p\geq5$ be a prime and $S_k=1^k+2^k+...+(p-1)^k,\forall k\in\mathbb{N}.$ Prove that there is an infinity of numbers $n\in\mathbb{N}$ such that $p^3$ divides $S_n$ and $ p $ divides $S_{n-1}$ and $S_{n-2}.$
2024 Bulgarian Autumn Math Competition, 9.3,9.4
$9.3$
A natural number is called square-free, if it is not divisible by the square of any prime number. For a natural number $a$, we consider the number $f(a) = a^{a+1} + 1$. Prove that:
a) if $a$ is even, then $f(a)$ is not square-free
b) there exist infinitely many odd $a$ for which $f(a)$ is not square-free
$9.4$
We will call a generalized $2n$-parallelogram a convex polygon with $2n$ sides, so that, traversed consecutively, the $k$th side is parallel and equal to the $(n+k)$th side for $k=1, 2, ... , n$. In a rectangular coordinate system, a generalized parallelogram is given with $50$ vertices, each with integer coordinates. Prove that its area is at least $300$.
2010 Belarus Team Selection Test, 2.2
Let $p$ be a positive prime integer, $S(p)$ be the number of triples $(x,y,z)$ such that $x,y,z\in\{0,1,..., p-1\}$ and $x^2+y^2+z^2$ is divided by $p$. Prove that $S(p) \ge 2p- 1$.
(I. Bliznets)
2007 Tournament Of Towns, 4
A binary sequence is constructed as follows. If the sum of the digits of the positive integer $k$ is even, the $k$-th term of the sequence is $0$. Otherwise, it is $1$. Prove that this sequence is not periodic.
2021 Cyprus JBMO TST, 2
Find all pairs of natural numbers $(\alpha,\beta)$ for which, if $\delta$ is the greatest common divisor of $\alpha,\beta$, and $\varDelta$ is the least common multiple of $\alpha,\beta$, then
\[ \delta + \Delta = 4(\alpha + \beta) + 2021\]
2019 BMT Spring, Tie 2
Find the sum of first two integers $n > 1$ such that $3^n$ is divisible by $n$ and $3^n - 1$ is divisible by $n - 1$.
2018 Turkey Team Selection Test, 8
For integers $m\geq 3$, $n$ and $x_1,x_2, \ldots , x_m$ if $x_{i+1}-x_i \equiv x_i-x_{i-1} (mod n) $ for every $2\leq i \leq m-1$, we say that the $m$-tuple $(x_1,x_2,\ldots , x_m)$ is an arithmetic sequence in $(mod n)$. Let $p\geq 5$ be a prime number and $1<a<p-1$ be an integer. Let ${a_1,a_2,\ldots , a_k}$ be the set of all possible remainders when positive powers of $a$ are divided by $p$. Show that if a permutation of ${a_1,a_2,\ldots , a_k}$ is an arithmetic sequence in $(mod p)$, then $k=p-1$.
2009 India IMO Training Camp, 11
Find all integers $ n\ge 2$ with the following property:
There exists three distinct primes $p,q,r$ such that
whenever $ a_1,a_2,a_3,\cdots,a_n$ are $ n$ distinct positive integers with the property that at least one of $ p,q,r$ divides $ a_j - a_k \ \forall 1\le j\le k\le n$,
one of $ p,q,r$ divides all of these differences.
2011 Morocco TST, 2
For positive integers $m$ and $n$, find the smalles possible value of $|2011^m-45^n|$.
[i](Swiss Mathematical Olympiad, Final round, problem 3)[/i]
2023 Chile TST Ibero., 1
Given a non-negative integer \( n \), determine the values of \( c \) for which the sequence of numbers
\[
a_n = 4^n c + \frac{4^n - (-1)^n}{5}
\]
contains at least one perfect square.
2010 Brazil National Olympiad, 2
Let $P(x)$ be a polynomial with real coefficients. Prove that there exist positive integers $n$ and $k$ such that $k$ has $n$ digits and more than $P(n)$ positive divisors.
2023-IMOC, N2
Find all pairs of positive integers $(a, b)$ such that $a^b+b^a=a!+b^2+ab+1$.
1996 Bosnia and Herzegovina Team Selection Test, 6
Let $a$ and $b$ be two integers which are coprime and let $n$ be one variable integer. Determine probability that number of solutions $(x,y)$, where $x$ and $y$ are nonnegative integers, of equation $ax+by=n$ is $\left\lfloor \frac{n}{ab} \right\rfloor + 1$
1980 IMO Longlists, 12
Find all pairs of solutions $(x,y)$:
\[ x^3 + x^2y + xy^2 + y^3 = 8(x^2 + xy + y^2 + 1). \]