Found problems: 15460
1948 Moscow Mathematical Olympiad, 148
a) Find all positive integer solutions of the equation $x^y = y^x$ ($x \ne y$).
b) Find all positive rational solutions of the equation $x^y = y^x$ ($x \ne y$).
2022 Malaysia IMONST 2, 3
Prove that there is a multiple of $2^{2022}$ that has $2022$ digits, and can be written using digits $1$ and $2$ only.
2023 Euler Olympiad, Round 1, 9
Let's call the positive integer $x$ interesting, if there exists integer $y$ such that the following equation holds: $(x + y)^y = (x - y)^x.$ Suppose we list all interesting integers in increasing order. An interesting integer is considered very interesting if it is not relatively prime with any other interesting integer preceding it. Find the second very interesting integer.
[i]Note: It is assumed that the first interesting integer is not very interesting.[/i]
[i]Proposed by Zurab Aghdgomelashvili, Georgia[/i]
2004 Alexandru Myller, 4
Find the real numbers $ x>1 $ having the property that $ \sqrt[n]{\lfloor x^n \rfloor } $ is an integer for any natural number $ n\ge 2. $
[i]Mihai Piticari[/i] and [i]Dan Popescu[/i]
1956 AMC 12/AHSME, 34
If $ n$ is any whole number, $ n^2(n^2 \minus{} 1)$ is always divisible by
$ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 24 \qquad\textbf{(C)}\ \text{any multiple of }12 \qquad\textbf{(D)}\ 12 \minus{} n \qquad\textbf{(E)}\ 12\text{ and }24$
2007 Rioplatense Mathematical Olympiad, Level 3, 1
Determine the values of $n \in N$ such that a square of side $n$ can be split into a square of side $1$ and five rectangles whose side measures are $10$ distinct natural numbers and all greater than $1$.
2003 Austrian-Polish Competition, 7
Put $f(n) = \frac{n^n - 1}{n - 1}$. Show that $n!^{f(n)}$ divides $(n^n)! $.
Find as many positive integers as possible for which $n!^{f(n)+1}$ does not divide $(n^n)!$ .
2011 Bosnia And Herzegovina - Regional Olympiad, 4
For positive integer $n$, prove that at least one of the numbers $$A=2n-1 , B=5n-1, C=13n-1$$ is not perfect square
1969 IMO Shortlist, 30
$(GDR 2)^{IMO1}$ Prove that there exist infinitely many natural numbers $a$ with the following property: The number $z = n^4 + a$ is not prime for any natural number $n.$
2003 Bulgaria Team Selection Test, 4
Is it true that for any permulation $a_1,a_2.....,a_{2002}$ of $1,2....,2002$ there are positive integers $m,n$ of the same parity such that $0<m<n<2003$ and $a_m+a_n=2a_{\frac {m+n}{2}}$
1983 Canada National Olympiad, 1
Find all positive integers $w$, $x$, $y$ and $z$ which satisfy $w! = x! + y! + z!$.
2016 Thailand Mathematical Olympiad, 6
Let $m$ and $n$ be positive integers. Prove that if $m^{4^n+1} - 1$ is a prime number, then there exists an integer $t \ge 0$ such that $n = 2^t$.
1996 Bundeswettbewerb Mathematik, 2
Define the sequence $(x_n)$ by $x_0 = 0$ and for all $n \in \mathbb N,$
\[x_n=\begin{cases} x_{n-1} + (3^r - 1)/2,&\mbox{ if } n = 3^{r-1}(3k + 1);\\ x_{n-1} - (3^r + 1)/2, & \mbox{ if } n = 3^{r-1}(3k + 2).\end{cases}\]
where $k \in \mathbb N_0, r \in \mathbb N$. Prove that every integer occurs in this sequence exactly once.
MMPC Part II 1996 - 2019, 2019
[b]p1.[/b] Consider a parallelogram $ABCD$ with sides of length $a$ and $b$, where $a \ne b$. The four points of intersection of the bisectors of the interior angles of the parallelogram form a rectangle $EFGH$. A possible configuration is given below.
Show that $$\frac{Area(ABCD)}{Area(EFGH)}=\frac{2ab}{(a - b)^2}$$
[img]https://cdn.artofproblemsolving.com/attachments/e/a/afaf345f2ef7c8ecf4388918756f0b56ff20ef.png[/img]
[b]p2.[/b] A metal wire of length $4\ell$ inches (where $\ell$ is a positive integer) is used as edges to make a cardboard rectangular box with surface area $32$ square inches and volume $8$ cubic inches. Suppose that the whole wire is used.
(i) Find the dimension of the box if $\ell= 9$, i.e., find the length, the width, and the height of the box without distinguishing the different orders of the numbers. Justify your answer.
(ii) Show that it is impossible to construct such a box if $\ell = 10$.
[b]p3.[/b] A Pythagorean n-tuple is an ordered collection of counting numbers $(x_1, x_2,..., x_{n-1}, x_n)$ satisfying the equation $$x^2_1+ x^2_2+ ...+ x^2_{n-1} = x^2_{n}.$$
For example, $(3, 4, 5)$ is an ordinary Pythagorean $3$-tuple (triple) and $(1, 2, 2, 3)$ is a Pythagorean $4$-tuple.
(a) Given a Pythagorean triple $(a, b, c)$ show that the $4$-tuple $(a^2, ab, bc, c^2)$ is Pythagorean.
(b) Extending part (a) or using any other method, come up with a procedure that generates Pythagorean $5$-tuples from Pythagorean $3$- and/or $4$-tuples. Few numerical examples will not suffice. You have to find a method that will generate infinitely many such $5$-tuples.
(c) Find a procedure to generate Pythagorean $6$-tuples from Pythagorean $3$- and/or $4$- and/or $5$-tuples.
Note. You can assume without proof that there are infinitely many Pythagorean triples.
[b]p4.[/b] Consider the recursive sequence defined by $x_1 = a$, $x_2 = b$ and $$x_{n+2} =\frac{x_{n+1} + x_n - 1}{x_n - 1}, n \ge 1 .$$
We call the pair $(a, b)$ the seed for this sequence. If both $a$ and $b$ are integers, we will call it an integer seed.
(a) Start with the integer seed $(2, 2019)$ and find $x_7$.
(b) Show that there are infinitely many integer seeds for which $x_{2020} = 2020$.
(c) Show that there are no integer seeds for which $x_{2019} = 2019$.
[b]p5.[/b] Suppose there are eight people at a party. Each person has a certain amount of money. The eight people decide to play a game. Let $A_i$, for $i = 1$ to $8$, be the amount of money person $i$ has in his/her pocket at the beginning of the game. A computer picks a person at random. The chosen person is eliminated from the game and their money is put into a pot. Also magically the amount of money in the pockets of the remaining players goes up by the dollar amount in the chosen person's pocket. We continue this process and at the end of the seventh stage emerges a single person and a pot containing $M$ dollars. What is the expected value of $M$? The remaining player gets the pot and the money in his/her pocket. What is the expected value of what he/she takes home?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Israel National Olympiad, 1
[list=a]
[*] Find an example of three positive integers $a,b,c$ satisfying $31a+30b+28c=365$.
[*] Prove that any triplet $a,b,c$ satisfying the above condition, also satisfies $a+b+c=12$.
[/list]
2014 Argentine National Olympiad, Level 3, 1.
$201$ positive integers are written on a line, such that both the first one and the last one are equal to $19999$. Each one of the remaining numbers is less than the average of its neighbouring numbers, and the differences between each one of the remaining numbers and the average of its neighbouring numbers are all equal to a unique integer. Find the second-to-last term on the line.
2015 Olympic Revenge, 1
For $n \in \mathbb{N}$, let $P(n)$ denote the product of distinct prime factors of $n$, with $P(1) = 1$. Show that for any $a_0 \in \mathbb{N}$, if we define a sequence $a_{k+1} = a_k + P(a_k)$ for $k \ge 0$, there exists some $k \in \mathbb{N}$ with $a_k/P(a_k) = 2015$.
LMT Team Rounds 2021+, 7
How many $2$-digit factors does $555555$ have?
VMEO III 2006 Shortlist, N7
Prove that there are only [b]finitely[/b] positive integer $a$ such that $a-2006=\sum\limits_{i=1}^{2006} 2^ia_i$ with $\{a_i\}$ as divisors (not necessary distinct) of $n$.
2020 Dutch IMO TST, 3
Find all pairs $(a, b)$ of positive integers for which $a + b = \phi (a) + \phi (b) + gcd (a, b)$.
Here $ \phi (n)$ is the number of numbers $k$ from $\{1, 2,. . . , n\}$ with $gcd (n, k) = 1$.
2016 Dutch IMO TST, 3
Let $k$ be a positive integer, and let $s(n)$ denote the sum of the digits of $n$.
Show that among the positive integers with $k$ digits, there are as many numbers $n$ satisfying $s(n) < s(2n)$ as there are numbers $n$ satisfying $s(n) > s(2n)$.
2001 AIME Problems, 13
In quadrilateral $ABCD$, $\angle{BAD}\cong\angle{ADC}$ and $\angle{ABD}\cong\angle{BCD}$, $AB=8$, $BD=10$, and $BC=6$. The length $CD$ may be written in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2020 Caucasus Mathematical Olympiad, 4
Find all functions $f : \mathbb{N}\rightarrow{\mathbb{N}}$ such that for all positive integers $m$ and $n$ the number $f(m)+n-m$ is divisible by $f(n)$.
2020 New Zealand MO, 1
What is the maximum integer $n$ such that $\frac{50!}{2^n}$ is an integer?
Maryland University HSMC part II, 2003
[b]p1.[/b] (a) Find three positive integers $a, b, c$ whose sum is $407$, and whose product (when written in base $10$) ends in six $0$'s.
(b) Prove that there do NOT exist positive integers $a, b, c$ whose sum is $407$ and whose product ends in seven $0$'s.
[b]p2.[/b] Three circles, each of radius $r$, are placed on a plane so that the center of each circle lies on a point of intersection of the other two circles. The region $R$ consists of all points inside or on at least one of these three circles. Find the area of $R$.
[b]p3.[/b] Let $f_1(x) = a_1x^2+b_1x+c_1$, $f_2(x) = a_2x^2+b_2x+c_2$ and $f_3(x) = a_3x^2+b_3x+c_3$ be the equations of three parabolas such that $a_1 > a_2 > a-3$. Prove that if each pair of parabolas intersects in exactly one point, then all three parabolas intersect in a common point.
[b]p4.[/b] Gigafirm is a large corporation with many employees.
(a) Show that the number of employees with an odd number of acquaintances is even.
(b) Suppose that each employee with an even number of acquaintances sends a letter to each of these acquaintances. Each employee with an odd number of acquaintances sends a letter to each non-acquaintance. So far, Leslie has received $99$ letters. Prove that Leslie will receive at least one more letter.
(Notes: "acquaintance" and "non-acquaintance" refer to employees of Gigaform. If $A$ is acquainted with $B$, then $B$ is acquainted with $A$. However, no one is acquainted with himself.)
[b]p5.[/b] (a) Prove that for every positive integer $N$, if $A$ is a subset of the numbers $\{1, 2, ...,N\}$ and $A$ has size at least $2N/3 + 1$, then $A$ contains a three-term arithmetic progression (i.e., there are positive integers $a$ and $b$ so that all three of the numbers $a$,$a + b$, and $a + 2b$ are elements of $A$).
(b) Show that if $A$ is a subset of $\{1, 2, ..., 3500\}$ and $A$ has size at least $2003$, then $A$ contains a three-term arithmetic progression.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].