This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1999 Ukraine Team Selection Test, 6

Show that for any $n \in N$ the polynomial $f(x) = (x^2 +x)^{2^n}+1$ is irreducible over $Z[x]$.

2015 Regional Competition For Advanced Students, 2

Let $x$, $y$, and $z$ be positive real numbers with $x+y+z = 3$. Prove that at least one of the three numbers $$x(x+y-z)$$ $$y(y+z-x)$$ $$z(z+x-y)$$ is less or equal $1$. (Karl Czakler)

2023 Stanford Mathematics Tournament, R8

[b]p22.[/b] Consider the series $\{A_n\}^{\infty}_{n=0}$, where $A_0 = 1$ and for every $n > 0$, $$A_n = A_{\left[ \frac{n}{2023}\right]} + A_{\left[ \frac{n}{2023^2}\right]}+A_{\left[ \frac{n}{2023^3}\right]},$$ where $[x]$ denotes the largest integer value smaller than or equal to $x$. Find the $(2023^{3^2}+20)$-th element of the series. [b]p23.[/b] The side lengths of triangle $\vartriangle ABC$ are $5$, $7$ and $8$. Construct equilateral triangles $\vartriangle A_1BC$, $\vartriangle B_1CA$, and $\vartriangle C_1AB$ such that $A_1$,$B_1$,$C_1$ lie outside of $\vartriangle ABC$. Let $A_2$,$B_2$, and $C_2$ be the centers of $\vartriangle A_1BC$, $\vartriangle B_1CA$, and $\vartriangle C_1AB$, respectively. What is the area of $\vartriangle A_2B_2C_2$? [b]p24. [/b]There are $20$ people participating in a random tag game around an $20$-gon. Whenever two people end up at the same vertex, if one of them is a tagger then the other also becomes a tagger. A round consists of everyone moving to a random vertex on the $20$-gon (no matter where they were at the beginning). If there are currently $10$ taggers, let $E$ be the expected number of untagged people at the end of the next round. If $E$ can be written as $\frac{a}{b}$ for $a, b$ relatively prime positive integers, compute $a + b$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Moldova EGMO TST, 5

Prove that the number $a=2019^{2020}+4^{2019}$ is a composite number.

2013 Peru MO (ONEM), 2

The positive integers $a, b, c$ are such that $$gcd \,\,\, (a, b, c) = 1,$$ $$gcd \,\,\,(a, b + c) > 1,$$ $$gcd \,\,\,(b, c + a) > 1,$$ $$gcd \,\,\,(c, a + b) > 1.$$ Determine the smallest possible value of $a + b + c$. Clarification: gcd stands for greatest common divisor.

2001 Spain Mathematical Olympiad, Problem 4

The integers between $1$ and $9$ inclusive are distributed in the units of a $3$ x $3$ table. You sum six numbers of three digits: three that are read in the rows from left to right, and three that are read in the columns from top to bottom. Is there any such distribution for which the value of this sum is equal to $2001$?

2015 India IMO Training Camp, 3

Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) [i]Proposed by Hong Kong[/i]

1969 German National Olympiad, 1

Every nonnegative periodic decimal fraction represents a rational number, also in the form $\frac{p}{q}$ can be represented ($p$ and $q$ are natural numbers and coprime, $p\ge 0$, $q > 0)$. Now let $a_1$, $a_2$, $a_3$ and $a_4$ be digits to represent numbers in the decadic system. Let $a_1 \ne a_3$ or $a_2 \ne a_4$.Prove that it for the numbers: $z_1 = 0, \overline{a_1a_2a_3a_4} = 0,a_1a_2a_3a_4a_1a_2a_3a_4...$ $z_2 = 0, \overline{a_4a_1a_2a_3}$ $z_3 = 0, \overline{a_3a_4a_1a_2}$ $z_4 = 0, \overline{a_2a_3a_4a_1}$ In the above representation $p/q$ always have the same denominator. [hide=original wording]Jeder nichtnegative periodische Dezimalbruch repr¨asentiert eine rationale Zahl, die auch in der Form p/q dargestellt werden kann (p und q nat¨urliche Zahlen und teilerfremd, p >= 0, q > 0). Nun seien a1, a2, a3 und a4 Ziffern zur Darstellung von Zahlen im dekadischen System. Dabei sei a1 $\ne$ a3 oder a2 $\ne$ a4. Beweisen Sie! Die Zahlen z1 = 0, a1a2a3a4 = 0,a1a2a3a4a1a2a3a4... z2 = 0, a4a1a2a3 z3 = 0, a3a4a1a2 z4 = 0, a2a3a4a1 haben in der obigen Darstellung p/q stets gleiche Nenner.[/hide]

2010 Saudi Arabia BMO TST, 1

Find all triples $(x,y,z)$ of positive integers such that $3^x + 4^y = 5^z$.

EMCC Guts Rounds, 2019

[u]Round 1[/u] [b]p1.[/b] What is the smallest number equal to its cube? [b]p2.[/b] Fhomas has $5$ red spaghetti and $5$ blue spaghetti, where spaghetti are indistinguishable except for color. In how many different ways can Fhomas eat $6$ spaghetti, one after the other? (Two ways are considered the same if the sequence of colors are identical) [b]p3.[/b] Jocelyn labels the three corners of a triangle with three consecutive natural numbers. She then labels each edge with the sum of the two numbers on the vertices it touches, and labels the center with the sum of all three edges. If the total sum of all labels on her triangle is $120$, what is the value of the smallest label? [u]Round 2[/u] [b]p4.[/b] Adam cooks a pie in the shape of a regular hexagon with side length $12$, and wants to cut it into right triangular pieces with angles $30^o$, $60^o$, and $90^o$, each with shortest side $3$. What is the maximum number of such pieces he can make? [b]p5.[/b] If $f(x) =\frac{1}{2-x}$ and $g(x) = 1-\frac{1}{x}$ , what is the value of $f(g(f(g(... f(g(f(2019))) ...))))$, where there are $2019$ functions total, counting both $f$ and $g$? [b]p6.[/b] Fhomas is buying spaghetti again, which is only sold in two types of boxes: a $200$ gram box and a $500$ gram box, each with a fixed price. If Fhomas wants to buy exactly $800$ grams, he must spend $\$8:80$, but if he wants to buy exactly 900 grams, he only needs to spend $\$7:90$! In dollars, how much more does the $500$ gram box cost than the $200$ gram box? [u]Round 3[/u] [b]p7.[/b] Given that $$\begin{cases} a + 5b + 9c = 1 \\ 4a + 2b + 3c = 2 \\ 7a + 8b + 6c = 9\end{cases}$$ what is $741a + 825b + 639c$? [b]p8.[/b] Hexagon $JAMESU$ has line of symmetry $MU$ (i.e., quadrilaterals $JAMU$ and $SEMU$ are reflections of each other), and $JA = AM = ME = ES = 1$. If all angles of $JAMESU$ are $135$ degrees except for right angles at $A$ and $E$, find the length of side $US$. [b]p9.[/b] Max is parked at the $11$ mile mark on a highway, when his pet cheetah, Min, leaps out of the car and starts running up the highway at its maximum speed. At the same time, Max starts his car and starts driving down the highway at $\frac12$ his maximum speed, driving all the way to the $10$ mile mark before realizing that his cheetah is gone! Max then immediately reverses directions and starts driving back up the highway at his maximum speed, nally catching up to Min at the $20$ mile mark. What is the ratio between Max's max speed and Min's max speed? [u]Round 4[/u] [b]p10.[/b] Kevin owns three non-adjacent square plots of land, each with side length an integer number of meters, whose total area is $2019$ m$^2$. What is the minimum sum of the perimeters of his three plots, in meters? [b]p11.[/b] Given a $5\times 5$ array of lattice points, how many squares are there with vertices all lying on these points? [b]p12.[/b] Let right triangle $ABC$ have $\angle A = 90^o$, $AB = 6$, and $AC = 8$. Let points $D,E$ be on side $AC$ such that $AD = EC = 2$, and let points $F,G$ be on side $BC$ such that $BF = FG = 3$. Find the area of quadrilateral $FGED$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949413p26408203]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Contests, 1

A positive proper divisor is a positive divisor of a number, excluding itself. For positive integers $n \ge 2$, let $f(n)$ denote the number that is one more than the largest proper divisor of $n$. Determine all positive integers $n$ such that $f(f(n)) = 2$.

1982 Bundeswettbewerb Mathematik, 1

Let $S$ be the sum of the greatest odd divisors of the natural numbers $1$ through $2^n$. Prove that $3S = 4^n + 2$.

2018 India PRMO, 1

A book is published in three volumes, the pages being numbered from $1$ onwards. The page numbers are continued from the first volume to the second volume to the third. The number of pages in the second volume is $50$ more than that in the first volume, and the number pages in the third volume is one and a half times that in the second. The sum of the page numbers on the first pages of the three volumes is $1709$. If $n$ is the last page number, what is the largest prime factor of $n$?

2017 QEDMO 15th, 1

Find all integers $x, y, z$ satisfy the $x^4-10y^4 + 3z^6 = 21$.

2021 ELMO Problems, 2

Let $n > 1$ be an integer and let $a_1, a_2, \ldots, a_n$ be integers such that $n \mid a_i-i$ for all integers $1 \leq i \leq n$. Prove there exists an infinite sequence $b_1,b_2, \ldots$ such that [list] [*] $b_k\in\{a_1,a_2,\ldots, a_n\}$ for all positive integers $k$, and [*] $\sum\limits_{k=1}^{\infty}\frac{b_k}{n^k}$ is an integer. [/list]

2023 Durer Math Competition Finals, 3

Which is the largest four-digit number that has all four of its digits among its divisors and its digits are all different?

Azerbaijan Al-Khwarizmi IJMO TST 2025, 3

Let $a$ and $b$ be integers such that $a - b = a^2c - b^2d$ for some consecutive integers $c$ and $d$. Prove that $|a - b|$ is a perfect square.

1969 IMO Longlists, 22

$(FRA 5)$ Let $\alpha(n)$ be the number of pairs $(x, y)$ of integers such that $x+y = n, 0 \le y \le x$, and let $\beta(n)$ be the number of triples $(x, y, z)$ such that$ x + y + z = n$ and $0 \le z \le y \le x.$ Find a simple relation between $\alpha(n)$ and the integer part of the number $\frac{n+2}{2}$ and the relation among $\beta(n), \beta(n -3)$ and $\alpha(n).$ Then evaluate $\beta(n)$ as a function of the residue of $n$ modulo $6$. What can be said about $\beta(n)$ and $1+\frac{n(n+6)}{12}$? And what about $\frac{(n+3)^2}{6}$? Find the number of triples $(x, y, z)$ with the property $x+ y+ z \le n, 0 \le z \le y \le x$ as a function of the residue of $n$ modulo $6.$What can be said about the relation between this number and the number $\frac{(n+6)(2n^2+9n+12)}{72}$?

2015 Taiwan TST Round 2, 1

Let the sequence $\{a_n\}$ satisfy $a_{n+1}=a_n^3+103,n=1,2,...$. Prove that at most one integer $n$ such that $a_n$ is a perfect square.

2018 Korea Junior Math Olympiad, 2

Find all positive integer $N$ which has not less than $4$ positive divisors, such that the sum of squares of the $4$ smallest positive divisors of $N$ is equal to $N$.

2004 Switzerland Team Selection Test, 12

Find all natural numbers which can be written in the form $\frac{(a+b+c)^2}{abc}$ , where $a,b,c \in N$.

2014 USA TSTST, 6

Suppose we have distinct positive integers $a, b, c, d$, and an odd prime $p$ not dividing any of them, and an integer $M$ such that if one considers the infinite sequence \begin{align*} ca &- db \\ ca^2 &- db^2 \\ ca^3 &- db^3 \\ ca^4 &- db^4 \\ &\vdots \end{align*} and looks at the highest power of $p$ that divides each of them, these powers are not all zero, and are all at most $M$. Prove that there exists some $T$ (which may depend on $a,b,c,d,p,M$) such that whenever $p$ divides an element of this sequence, the maximum power of $p$ that divides that element is exactly $p^T$.

1998 Chile National Olympiad, 5

Show that the number $3$ can be written in a infinite number of different ways as the sum of the cubes of four integers.

2021 Iran Team Selection Test, 3

There exist $4$ positive integers $a,b,c,d$ such that $abcd \neq 1$ and each pair of them have a GCD of $1$. Two functions $f,g : \mathbb{N} \rightarrow \{0,1\}$ are multiplicative functions such that for each positive integer $n$ we have : $$f(an+b)=g(cn+d)$$ Prove that at least one of the followings hold. $i)$ for each positive integer $n$ we have $f(an+b)=g(cn+d)=0$ $ii)$ There exists a positive integer $k$ such that for all $n$ where $(n,k)=1$ we have $g(n)=f(n)=1$ (Function $f$ is multiplicative if for any natural numbers $a,b$ we have $f(ab)=f(a)f(b)$) Proposed by [i]Navid Safaii[/i]

2012 Paraguay Mathematical Olympiad, 1

Define a list of number with the following properties: - The first number of the list is a one-digit natural number. - Each number (since the second) is obtained by adding $9$ to the number before in the list. - The number $2012$ is in that list. Find the first number of the list.