Found problems: 15460
2017 Kyrgyzstan Regional Olympiad, 4
Prove that for all n=3,4,5.... there excist odd x,y such $2^n=x^2 + 7y^2$ .
2018 IFYM, Sozopol, 3
Find all positive integers $n$ for which the number
$\frac{n^{3n-2}-3n+1}{3n-2}$
is whole.
[hide=EDIT:] In the original problem instead of whole we search for integers, so with this change $n=1$ will be a solution. [/hide]
2012 Princeton University Math Competition, A3
Let the sequence $\{x_n\}$ be defined by $x_1 \in \{5, 7\}$ and, for $k \ge 1, x_{k+1} \in \{5^{x_k} , 7^{x_k} \}$. For example, the possible values of $x_3$ are $5^{5^5}, 5^{5^7}, 5^{7^5}, 5^{7^7}, 7^{5^5}, 7^{5^7}, 7^{7^5}$, and $7^{7^7}$. Determine the sum of all possible values for the last two digits of $x_{2012}$.
2022 Bulgarian Autumn Math Competition, Problem 8.4
Find the number of sequences with $2022$ natural numbers $n_1, n_2, n_3, \ldots, n_{2022}$, such that in every sequence:
$\bullet$ $n_{i+1}\geq n_i$
$\bullet$ There is at least one number $i$, such that $n_i=2022$
$\bullet$ For every $(i, j)$ $n_1+n_2+\ldots+n_{2022}-n_i-n_j$ is divisible to both $n_i$ and $n_j$
2006 VTRMC, Problem 3
Hey,
This problem is from the VTRMC 2006.
3. Recall that the Fibonacci numbers $ F(n)$ are defined by $ F(0) \equal{} 0$, $ F(1) \equal{} 1$ and $ F(n) \equal{} F(n \minus{} 1) \plus{} F(n \minus{} 2)$ for $ n \geq 2$. Determine the last digit of $ F(2006)$ (e.g. the last digit of 2006 is 6).
As, I and a friend were working on this we noticed an interesting relationship when writing the Fibonacci numbers in "mod" notation.
Consider the following,
01 = 1 mod 10
01 = 1 mod 10
02 = 2 mod 10
03 = 3 mod 10
05 = 5 mod 10
08 = 6 mod 10
13 = 3 mod 10
21 = 1 mod 10
34 = 4 mod 10
55 = 5 mod 10
89 = 9 mod 10
Now, consider that between the first appearance and second apperance of $ 5 mod 10$, there is a difference of five terms. Following from this we see that the third appearance of $ 5 mod 10$ occurs at a difference 10 terms from the second appearance. Following this pattern we can create the following relationships.
$ F(55) \equal{} F(05) \plus{} 5({2}^{2})$
This is pretty much as far as we got, any ideas?
2021 Kosovo National Mathematical Olympiad, 1
Find all natural two digit numbers such that when you substract by seven times the sum of its digit
from the number you get a prime number.
ABMC Online Contests, 2023 Oct
[b]p1.[/b] What is $2 \cdot 24 + 20 \cdot 24 + 202 \cdot 4 + 2024$?
[b]p2.[/b] Jerry has $300$ legos. Tie can either make cars, which require $17$ legos, or bikes, which require $13$ legos. Assuming he uses all of his legos, how many ordered pairs $(a, b)$ are there such that he makes $a$ cars and $b$ bikes?
[b]p3.[/b] Patrick has $7$ unique textbooks: $2$ Geometry books, $3$ Precalculus books and $2$ Algebra II books. How many ways can he arrange his books on a bookshelf such that all the books of the same subjects are adjacent to each other?
[b]p4.[/b] After a hurricane, a $32$ meter tall flagpole at the Act on-Boxborough Regional High School snapped and fell over. Given that the snapped part remains in contact with the original pole, and the top of the polo falls $24$ meters away from the bottom of the pole, at which height did the polo snap? (Assume the flagpole is perpendicular to the ground.)
[b]p5.[/b] Jimmy is selling lemonade. Iio has $200$ cups of lemonade, and he will sell them all by the end of the day. Being the ethically dubious individual he is, Jimmy intends to dilute a few of the cups of lemonade with water to conserve resources. Jimmy sells each cup for $\$4$. It costs him $\$ 1$ to make a diluted cup of lemonade, and it costs him $\$2.75$ to make a cup of normal lemonade. What is the minimum number of diluted cups Jimmy must sell to make a profit of over $\$400$?
[b]p6.[/b] Jeffrey has a bag filled with five fair dice: one with $4$ sides, one with $6$ sides, one with $8$ sides, one with $12$ sides, and one with $20$ sides. The dice are numbered from $1$ to the number of sides on the die. Now, Marco will randomly pick a die from .Jeffrey's bag and roll it. The probability that Marco rolls a $7$ can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a+b$.
[b]p7.[/b] What is the remainder when the sum of the first $2024$ odd numbers is divided by $6072$?
[b]p8.[/b] A rhombus $ABCD$ with $\angle A = 60^o$ and $AB = 600$ cm is drawn on a piece of paper. Three ants start moving from point $A$ to the three other points on the rhombus.
One ant walks from $A$ to $B$ at a leisurely speed of $10$ cm/s. The second ant runs from $A$ to $C$ at a slightly quicker pace of $6\sqrt3$ cm/s, arriving to $C$ $x$ seconds after the first ant. The third ant travels from $A$ to $B$ to $D$ at a constant speed, arriving at $D$ $x$ seconds after the second ant.
The speed of the last ant can be written as $\frac{m}{n}$ cm/s, where $m$ and $n$ are relatively prime positive integers. Find $mn$.
[b]p9.[/b] This year, the Apple family has harvested so many apples that they cannot sell them all! Applejack decides to make $40$ glasses of apple cider to give to her friends. If Twilight and Fluttershy each want $1$ or $2$ glasses; Pinkie Pic wants cither $2$, $14$, or $15$ glasses; Rarity wants an amount of glasses that is a power of three; and Rainbow Dash wants any odd number of glasses, then how many ways can Applejack give her apple cider to her friends?
Note: $1$ is considered to be a power of $3$.
[b]p10.[/b] Let $g_x$ be a geometric sequence with first term $27$ and successive ratio $2n$ (so $g_{x+1}/g_x = 2n$). Then, define a function $f$ as $f(x) = \log_n(g_x)$, where $n$ is the base of the logarithm. It is known that the sum of the first seven terms of $f(x)$ is $42$. Find $g_2$, the second term of the geometric sequence.
Note: The logarithm base $b$ of $x$, denoted $\log_b(x)$ is equal to the value $y$ such that $b^y = x$. In other words, if $\log_b(x) = y$, then $b^y = x$.
[b]p11.[/b] Let $\varepsilon$ be an ellipse centered around the origin, such that its minor axis is perpendicular to the $x$-axis. The length of the ellipse's major and minor axes is $8$ and $6$, respectively. Then, let $ABCD$ be a rectangle centered around the origin, such that $AB$ is parallel to the $x$-axis. The lengths of $AB$ and $BC$ are $8$ and $3\sqrt2$, respectively. The area outside the ellipse but inside the rectangle can be expressed as $a\sqrt{b}-c-d\pi$, for positive integers $a$, $b$, $c$, $d$ where $b$ is not divisible by a perfect square of any prime. Find $a + b + c + d$.
[img]https://cdn.artofproblemsolving.com/attachments/e/c/9d943966763ee7830d037ef98c21139cf6f529.png[/img]
[b]p12.[/b] Let $N = 2^7 \cdot 3^7 \cdot 5^5$. Find the number of ways to express $N$ as the product of squares and cubes, all of which are integers greater than $1$.
[b]p13.[/b] Jerry and Eric are playing a $10$-card game where Jerry is deemed the ’’landlord" and Eric is deemed the ' peasant'’. To deal the cards, the landlord keeps one card to himself. Then, the rest of the $9$ cards are dealt out, such that each card has a $1/2$ chance to go to each player. Once all $10$ cards are dealt out, the landlord compares the number of cards he owns with his peasant. The probability that the landlord wins is the fraction of cards he has. (For example, if Jerry has $5$ cards and Eric has $2$ cards, Jerry has a$ 5/7$ ths chance of winning.) The probability that Jerry wins the game can be written as $\frac{p}{q}$ where $p$ and $q$ are relatively prime. Find $p + q$.
[b]p14.[/b] Define $P(x) = 20x^4 + 24x^3 + 10x^2 + 21x+ 7$ to have roots $a$, $b$, $c$, and $d$. If $Q(x)$ has roots $\frac{1}{a-2}$,$\frac{1}{b-2}$,$ \frac{1}{c-2}$, $\frac{1}{d-2}$ and integer coefficients with a greatest common divisor of $1$, then find $Q(2)$.
[b]p15.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 14$, $BC = 13$, and $AC = 15$. The incircle of $\vartriangle ABC$ is drawn with center $I$, tangent to $\overline{AB}$ at $X$. The line $\overleftrightarrow{IX}$ intersects the incircle again at $Y$ and intersects $\overline{AC}$ at $Z$. The area of $\vartriangle AYZ$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1997 Vietnam National Olympiad, 2
Prove that for evey positive integer n, there exits a positive integer k such that $ 2^n | 19^k \minus{} 97$
2014 IFYM, Sozopol, 1
Find all pairs of natural numbers $(m,n)$, for which $m\mid 2^{\varphi(n)} +1$ and $n\mid 2^{\varphi (m)} +1$.
2002 ITAMO, 1
Find all $3$-digit positive integers that are $34$ times the sum of their digits.
2015 HMIC, 1
Let $S$ be the set of positive integers $n$ such that the inequality
\[
\phi(n) \cdot \tau(n) \geq \sqrt{\frac{n^3}{3}}
\]
holds, where $\phi(n)$ is the number of positive integers $k \le n$ that are relatively prime to $n$, and $\tau(n)$ is the number of positive divisors of $n$. Prove that $S$ is finite.
2023 Singapore Junior Math Olympiad, 4
Two distinct 2-digit prime numbers $p,q$ can be written one after the other in 2 different ways to form two 4-digit numbers. For example, 11 and 13 yield 1113 and 1311. If the two 4-digit numbers formed are both divisible by the average value of $p$ and $q$, find all possible pairs $\{p,q\}$.
2014 Portugal MO, 4
Determine all natural numbers $x$, $y$ and $z$, such that $x\leq y\leq z$ and \[\left(1+\frac1x\right)\left(1+\frac1y\right)\left(1+\frac1z\right) = 3\text{.}\]
1970 Putnam, A3
Note that $12^2=144$ ends in two $4$s and $38^2=1444$ end in three $4$s. Determine the length of the longest string of equal nonzero digits in which the square of an integer can end.
2003 Iran MO (3rd Round), 22
Let $ a_1\equal{}a_2\equal{}1$ and \[ a_{n\plus{}2}\equal{}\frac{n(n\plus{}1)a_{n\plus{}1}\plus{}n^2a_n\plus{}5}{n\plus{}2}\minus{}2\]for each $ n\in\mathbb N$. Find all $ n$ such that $ a_n\in\mathbb N$.
2018 IFYM, Sozopol, 2
$n > 1$ is an odd number and $a_1, a_2, . . . , a_n$ are positive integers such that $gcd(a_1, a_2, . . . , a_n) = 1$. If
$d = gcd (a_1^n + a_1.a_2. . . a_n, a_2^n + a_1.a_2. . . a_n, . . . , a_n^n + a_1.a_2. . . a_n) $
find all possible values of $d$.
2010 AIME Problems, 11
Let $ \mathcal{R}$ be the region consisting of the set of points in the coordinate plane that satisfy both $ |8 \minus{} x| \plus{} y \le 10$ and $ 3y \minus{} x \ge 15$. When $ \mathcal{R}$ is revolved around the line whose equation is $ 3y \minus{} x \equal{} 15$, the volume of the resulting solid is $ \frac {m\pi}{n\sqrt {p}}$, where $ m$, $ n$, and $ p$ are positive integers, $ m$ and $ n$ are relatively prime, and $ p$ is not divisible by the square of any prime. Find $ m \plus{} n \plus{} p$.
2013 Miklós Schweitzer, 2
Prove there exists a constant $k_0$ such that for any $k\ge k_0$, the equation
\[a^{2n}+b^{4n}+2013=ka^nb^{2n}\]
has no positive integer solutions $a,b,n$.
[i]Proposed by István Pink.[/i]
2003 Manhattan Mathematical Olympiad, 4
Let $p$ and $a$ be positive integer numbers having no common divisors except of $1$. Prove that $p$ is prime if and only if all the coefficients of the polynomial \[ F(x) = (x-a)^p - (x^p - a) \] are divisible by $p$.
1979 IMO Longlists, 66
Find all natural numbers $n$ for which $2^8 +2^{11} +2^n$ is a perfect square.
1990 IMO Shortlist, 27
Find all natural numbers $ n$ for which every natural number whose decimal representation has $ n \minus{} 1$ digits $ 1$ and one digit $ 7$ is prime.
1993 Czech And Slovak Olympiad IIIA, 4
The sequence ($a_n$) of natural numbers is defined by $a_1 = 2$ and $a_{n+1}$ equals the sum of tenth powers of the decimal digits of $a_n$ for all $n \ge 1$. Are there numbers which appear twice in the sequence ($a_n$)?
2011 International Zhautykov Olympiad, 2
Let $n$ be integer, $n>1.$ An element of the set $M=\{ 1,2,3,\ldots,n^2-1\}$ is called [i]good[/i] if there exists some element $b$ of $M$ such that $ab-b$ is divisible by $n^2.$ Furthermore, an element $a$ is called [i]very good[/i] if $a^2-a$ is divisible by $n^2.$ Let $g$ denote the number of [i]good[/i] elements in $M$ and $v$ denote the number of [i]very good[/i] elements in $M.$ Prove that
\[v^2+v \leq g \leq n^2-n.\]
2007 Hong kong National Olympiad, 2
is there any polynomial of $deg=2007$ with integer coefficients,such that for any integer $n$,$f(n),f(f(n)),f(f(f(n))),...$ is coprime to each other?
2025 Canada Junior National Olympiad, 1
Suppose an infinite non-constant arithmetic progression of integers contains $1$ in it. Prove that there are an infinite number of perfect cubes in this progression. (A [i]perfect cube[/i] is an integer of the form $k^3$, where $k$ is an integer. For example, $-8$, $0$ and $1$ are perfect cubes.)