Found problems: 15460
2021 Bangladeshi National Mathematical Olympiad, 2
Let $x$ and $y$ be positive integers such that $2(x+y)=gcd(x,y)+lcm(x,y)$. Find $\frac{lcm(x,y)}{gcd(x,y)}$.
2023 ABMC, Speed
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$.
[b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey?
[b]p3.[/b] What is the remainder when $20232023$ is divided by $50$?
[b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make?
[b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p7.[/b] What is the sum of the perfect square divisors of $640$?
[b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible?
[b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added?
[b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$.
[b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them?
[b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$.
[b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)?
[b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$?
[b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$.
[b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$.
[b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values.
[b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number?
[b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other?
[b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$.
[b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$.
Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function.
[b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$.
Note: $[ABCD]$ denotes the area of the polygon $ABCD$.
[b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$.
[b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 India Regional Mathematical Olympiad, 6
Let $n \ge 4$ be a natural number. Let $A_1A_2 \cdots A_n$ be a regular polygon and $X = \{ 1,2,3....,n \} $. A subset $\{ i_1, i_2,\cdots, i_k \} $ of $X$, with $k \ge 3$ and $i_1 < i_2 < \cdots < i_k$, is called a good subset if the angles of the polygon $A_{i_1}A_{i_2}\cdots A_{i_k}$ , when arranged in the increasing order, are in an arithmetic progression. If $n$ is a prime, show that a proper good subset of $X$ contains exactly four elements.
1994 China Team Selection Test, 1
Find all sets comprising of 4 natural numbers such that the product of any 3 numbers in the set leaves a remainder of 1 when divided by the remaining number.
2019 China Western Mathematical Olympiad, 1
Determine all the possible positive integer $n,$ such that $3^n+n^2+2019$ is a perfect square.
2022 Chile National Olympiad, 3
The $19$ numbers $472$ , $473$ , $...$ , $490$ are juxtaposed in some order to form a $57$-digit number. Can any of the numbers thus obtained be prime?
2000 France Team Selection Test, 2
A function from the positive integers to the positive integers satisfies these properties
1. $f(ab)=f(a)f(b)$ for any two coprime positive integers $a,b$.
2. $f(p+q)=f(p)+f(q)$ for any two primes $p,q$.
Prove that $f(2)=2, f(3)=3, f(1999)=1999$.
2014 Regional Competition For Advanced Students, 3
The sequence $(a_n)$ is defined with the recursion $a_{n + 1} = 5a^6_n + 3a^3_{n-1} + a^2_{n-2}$ for $n\ge 2$ and the set of initial values $\{a_0, a_1, a_2\} = \{2013, 2014, 2015\}$. (That is, the initial values are these three numbers in any order.)
Show that the sequence contains no sixth power of a natural number.
2006 China National Olympiad, 2
For positive integers $a_1,a_2 ,\ldots,a_{2006}$ such that $\frac{a_1}{a_2},\frac{a_2}{a_3},\ldots,\frac{a_{2005}}{a_{2006}}$ are pairwise distinct, find the minimum possible amount of distinct positive integers in the set$\{a_1,a_2,...,a_{2006}\}$.
2023 Chile National Olympiad, 1
Let $n$ be a natural number such that $n!$ is a multiple of $2023$ and is not divisible by $37$. Find the largest power of $11$ that divides $n!$.
LMT Guts Rounds, 2016
[u]Round 1[/u]
[b]p1.[/b] Today, the date $4/9/16$ has the property that it is written with three perfect squares in strictly increasing order. What is the next date with this property?
[b]p2.[/b] What is the greatest integer less than $100$ whose digit sumis equal to its greatest prime factor?
[b]p3.[/b] In chess, a bishop can only move diagonally any number of squares. Find the number of possible squares a bishop starting in a corner of a $20\times 16$ chessboard can visit in finitely many moves, including the square it stars on.
[u]Round 2 [/u]
[b]p4.[/b] What is the fifth smallest positive integer with at least $5$ distinct prime divisors?
[b]p5.[/b] Let $\tau (n)$ be the number of divisors of a positive integer $n$, including $1$ and $n$. Howmany positive integers $n \le 1000$ are there such that $\tau (n) > 2$ and $\tau (\tau (n)) = 2$?
[b]p6.[/b] How many distinct quadratic polynomials $P(x)$ with leading coefficient $1$ exist whose roots are positive integers and whose coefficients sum to $2016$?
[u]Round 3[/u]
[b]p7.[/b] Find the largest prime factor of $112221$.
[b]p8.[/b] Find all ordered pairs of positive integers $(a,b)$ such that $\frac{a^2b^2+1}{ab-1}$ is an integer.
[b]p9.[/b] Suppose $f : Z \to Z$ is a function such that $f (2x)= f (1-x)+ f (1-x)$ for all integers $x$. Find the value of $f (2) f (0) +f (1) f (6)$.
[u]Round 4[/u]
[b]p10.[/b] For any six points in the plane, what is the maximum number of isosceles triangles that have three of the points as vertices?
[b]p11.[/b] Find the sum of all positive integers $n$ such that $\sqrt{n+ \sqrt{n -25}}$ is also a positive integer.
[b]p12.[/b] Distinct positive real numbers are written at the vertices of a regular $2016$-gon. On each diagonal and edge of the $2016$-gon, the sum of the numbers at its endpoints is written. Find the minimum number of distinct numbers that are now written, including the ones at the vertices.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3158474p28715078]here[/url]. and 9-12 [url=https://artofproblemsolving.com/community/c3h3162282p28763571]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Ecuador NMO (OMEC), 5
Determine the number of positive integers $N = \overline{abcd}$, with $a, b, c, d$ nonzero digits, which satisfy $(2a -1) (2b -1) (2c- 1) (2d - 1) = 2abcd -1$.
2002 Singapore Senior Math Olympiad, 1
Let $f: N \to N$ be a function satisfying the following:
$\bullet$ $f(ab) = f(a)f(b)$, whenever the greatest common divisor of $a$ and $b$ is $1$.
$\bullet$ $f(p + q) = f(p)+ f(q)$ whenever $p$ and $q$ are primes.
Determine all possible values of $f(2002)$. Justify your answers.
2017 Polish Junior Math Olympiad Second Round, 4.
Do numbers $x_1, x_2, \ldots, x_{99}$ exist, where each of them is equal to $\sqrt{2}+1$ or $\sqrt{2}-1$, and satisfy the equation \[x_1x_2+x_2x_3+x_3x_4+\ldots+x_{98}x_{99}+x_{99}x_1=199\,?\] Justify your answer.
1978 Canada National Olympiad, 1
Let $n$ be an integer. If the tens digit of $n^2$ is 7, what is the units digit of $n^2$?
2008 Singapore Senior Math Olympiad, 2
Determine all primes $p$ such that $5^p + 4 p^4$ is a perfect square, i.e., the square of an integer.
2010 Federal Competition For Advanced Students, Part 1, 1
Let $f(n)=\sum_{k=0}^{2010}n^k$. Show that for any integer $m$ satisfying $2\leqslant m\leqslant 2010$, there exists no natural number $n$ such that $f(n)$ is divisible by $m$.
[i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 1)[/i]
2024 Regional Olympiad of Mexico Southeast, 1
Find all pairs of positive integers \(a, b\) such that the numbers \(a+1\), \(b+1\), \(2a+1\), \(2b+1\), \(a+3b\), and \(b+3a\) are all prime numbers.
2024 Princeton University Math Competition, A8
Let $a,b,c$ be pairwise coprime integers such a that $\tfrac{1}{a}+\tfrac{1}{b}+\tfrac{1}{c}=\tfrac{N}{a+b+c}$ for some positive integer $N.$ What is the sum of all possible values of $N.$
1996 AIME Problems, 13
In triangle $ABC, AB=\sqrt{30}, AC=\sqrt{6},$ and $BC=\sqrt{15}.$ There is a point $D$ for which $\overline{AD}$ bisects $\overline{BC}$ and $\angle ADB$ is a right angle. The ratio \[ \frac{\text{Area}(\triangle ADB)}{\text{Area}(\triangle ABC)} \] can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2017 Brazil Team Selection Test, 2
Let $\tau(n)$ be the number of positive divisors of $n$. Let $\tau_1(n)$ be the number of positive divisors of $n$ which have remainders $1$ when divided by $3$. Find all positive integral values of the fraction $\frac{\tau(10n)}{\tau_1(10n)}$.
2012 BMT Spring, Consolation
[b]p1.[/b] How many ways can we arrange the elements $\{1, 2, ..., n\}$ to a sequence $a_1, a_2, ..., a_n$ such that there is only exactly one $a_i$, $a_{i+1}$ such that $a_i > a_{i+1}$?
[b]p2. [/b]How many distinct (non-congruent) triangles are there with integer side-lengths and perimeter $2012$?
[b]p3.[/b] Let $\phi$ be the Euler totient function, and let $S = \{x| \frac{x}{\phi (x)} = 3\}$. What is $\sum_{x\in S} \frac{1}{x}$?
[b]p4.[/b] Denote $f(N)$ as the largest odd divisor of $N$. Compute $f(1) + f(2) + f(3) +... + f(29) + f(30)$.
[b]p5.[/b] Triangle $ABC$ has base $AC$ equal to $218$ and altitude $100$. Squares $s_1, s_2, s_3, ...$ are drawn such that $s_1$ has a side on $AC$ and has one point each touching $AB$ and $BC$, and square $s_k$ has a side on square $s_{k-}1$ and also touches $AB$ and $BC$ exactly once each. What is the sum of the area of these squares?
[b]p6.[/b] Let $P$ be a parabola $6x^2 - 28x + 10$, and $F$ be the focus. A line $\ell$ passes through $F$ and intersects the parabola twice at points $P_1 = (2,-22)$, $P_2$. Tangents to the parabola with points at $P_1, P_2$ are then drawn, and intersect at a point $Q$. What is $m\angle P_1QP_2$?
PS. You had better use hide for answers.
2019 Stars of Mathematics, 2
If $n\geqslant 3$ is an integer and $a_1,a_2,\dotsc ,a_n$ are non-zero integers such that
$$a_1a_2\cdots a_n\left( \frac{1}{a_1^2}+\frac{1}{a_2^2} +\cdots +\frac{1}{a_n^2}\right)$$is an integer, does it follow that the product $a_1a_2\cdots a_n$ is divisible by each $a_i^2$?
2024 Czech-Polish-Slovak Junior Match, 5
Is there a positive integer $n$ such that when we write the decimal digits of $2^n$ in opposite order, we get another integer power of $2$?
2010 Austria Beginners' Competition, 1
Prove that $2010$ cannot be represented as the difference between two square numbers.
(B. Schmidt, Graz University of Technology)