Found problems: 15460
LMT Team Rounds 2021+, 1
Given the following system of equations:
$$\begin{cases} R I +G +SP = 50 \\ R I +T + M = 63 \\ G +T +SP = 25 \\ SP + M = 13 \\ M +R I = 48 \\ N = 1 \end{cases}$$
Find the value of L that makes $LMT +SPR I NG = 2023$ true.
2016 Costa Rica - Final Round, A2
The initial number of inhabitants of a city of more than $150$ inhabitants is a perfect square. With an increase of $1000$ inhabitants it becomes a perfect square plus a unit. After from another increase of $1000$ inhabitants it is again a perfect square. Determine the quantity of inhabitants that are initially in the city.
2006 Germany Team Selection Test, 1
Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$.
Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.
2011 Brazil Team Selection Test, 1
Let $a,b,c$ be positive integers. Prove that it is impossible to have all of the three numbers $a^2+b+c,b^2+c+a,c^2+a+b$ to be perfect squares.
2011 Saudi Arabia IMO TST, 2
Consider the set $S= \{(a + b)^7 - a^7 - b^7 : a,b \in Z\}$. Find the greatest common divisor of all members in $S$.
PEN A Problems, 17
Let $m$ and $n$ be natural numbers such that \[A=\frac{(m+3)^{n}+1}{3m}\] is an integer. Prove that $A$ is odd.
2008 India Regional Mathematical Olympiad, 5
Three nonzero real numbers $ a,b,c$ are said to be in harmonic progression if $ \frac {1}{a} \plus{} \frac {1}{c} \equal{} \frac {2}{b}$. Find all three term harmonic progressions $ a,b,c$ of strictly increasing positive integers in which $ a \equal{} 20$ and $ b$ divides $ c$.
[17 points out of 100 for the 6 problems]
2014 Taiwan TST Round 3, 2
Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.
2023 Ecuador NMO (OMEC), 5
Find all positive integers $n$ such that $4^n + 4n + 1$ is a perfect square.
1997 Baltic Way, 17
A rectangle can be divided into $n$ equal squares. The same rectangle can also be divided into $n+76$ equal squares. Find $n$.
ABMC Online Contests, 2018 Oct
[b]p1.[/b] Compute the greatest integer less than or equal to $$\frac{10 + 12 + 14 + 16 + 18 + 20}{21}$$
[b]p2.[/b] Let$ A = 1$.$B = 2$, $C = 3$, $...$, $Z = 26$. Find $A + B +M + C$.
[b]p3.[/b] In Mr. M's farm, there are $10$ cows, $8$ chickens, and $4$ spiders. How many legs are there (including Mr. M's legs)?
[b]p4.[/b] The area of an equilateral triangle with perimeter $18$ inches can be expressed in the form $a\sqrt{b}{c}$ , where $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime. Find $a + b + c$.
[b]p5.[/b] Let $f$ be a linear function so $f(x) = ax + b$ for some $a$ and $b$. If $f(1) = 2017$ and $f(2) = 2018$, what is $f(2019)$?
[b]p6.[/b] How many integers $m$ satisfy $4 < m^2 \le 216$?
[b]p7.[/b] Allen and Michael Phelps compete at the Olympics for swimming. Allen swims $\frac98$ the distance Phelps swims, but Allen swims in $\frac59$ of Phelps's time. If Phelps swims at a rate of $3$ kilometers per hour, what is Allen's rate of swimming? The answer can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p8.[/b] Let $X$ be the number of distinct arrangements of the letters in "POONAM," $Y$ be the number of distinct arrangements of the letters in "ALLEN" and $Z$ be the number of distinct arrangements of the letters in "NITHIN." Evaluate $\frac{X+Z}{Y}$ :
[b]p9.[/b] Two overlapping circles, both of radius $9$ cm, have centers that are $9$ cm apart. The combined area of the two circles can be expressed as $\frac{a\pi+b\sqrt{c}+d}{e}$ where $c$ is not divisible by the square of any prime and the fraction is simplified. Find $a + b + c + d + e$.
[b]p10.[/b] In the Boxborough-Acton Regional High School (BARHS), $99$ people take Korean, $55$ people take Maori, and $27$ people take Pig Latin. $4$ people take both Korean and Maori, $6$ people take both Korean and Pig Latin, and $5$ people take both Maori and Pig Latin. $1$ especially ambitious person takes all three languages, and and $100$ people do not take a language. If BARHS does not oer any other languages, how many students attend BARHS?
[b]p11.[/b] Let $H$ be a regular hexagon of side length $2$. Let $M$ be the circumcircle of $H$ and $N$ be the inscribed circle of $H$. Let $m, n$ be the area of $M$ and $N$ respectively. The quantity $m - n$ is in the form $\pi a$, where $a$ is an integer. Find $a$.
[b]p12.[/b] How many ordered quadruples of positive integers $(p, q, r, s)$ are there such that $p + q + r + s \le 12$?
[b]p13.[/b] Let $K = 2^{\left(1+ \frac{1}{3^2} \right)\left(1+ \frac{1}{3^4} \right)\left(1+ \frac{1}{3^8}\right)\left(1+ \frac{1}{3^{16}} \right)...}$. What is $K^8$?
[b]p14.[/b] Neetin, Neeton, Neethan, Neethine, and Neekhil are playing basketball. Neetin starts out with the ball. How many ways can they pass 5 times so that Neethan ends up with the ball?
[b]p15.[/b] In an octahedron with side lengths $3$, inscribe a sphere. Then inscribe a second sphere tangent to the first sphere and to $4$ faces of the octahedron. The radius of the second sphere can be expressed in the form $\frac{\sqrt{a}-\sqrt{b}}{c}$ , where the square of any prime factor of $c$ does not evenly divide into $b$. Compute $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Moldova Team Selection Test, 12
Let $p\ge 5$ be a prime number. Prove that there exist positive integers $m$ and $n$ with $m+n\le \frac{p+1}{2}$ for which $p$ divides $2^n\cdot 3^m-1.$
2001 Poland - Second Round, 1
Find all integers $n\ge 3$ for which the following statement is true:
Any arithmetic progression $a_1,\ldots ,a_n$ with $n$ terms for which $a_1+2a_2+\ldots+na_n$ is rational contains at least one rational term.
2019 Canada National Olympiad, 2
Let $a,b$ be positive integers such that $a+b^3$ is divisible by $a^2+3ab+3b^2-1$. Prove that $a^2+3ab+3b^2-1$ is divisible by the cube of an integer greater than 1.
2010 Balkan MO, 4
For each integer $n$ ($n \ge 2$), let $f(n)$ denote the sum of all positive integers that are at most $n$ and not relatively prime to $n$.
Prove that $f(n+p) \neq f(n)$ for each such $n$ and every prime $p$.
2011 Hanoi Open Mathematics Competitions, 5
Let M = 7!.8!.9!.10!.11!.12!. How many factors of M are perfect squares ?
2023 Ukraine National Mathematical Olympiad, 9.7
You are given $n \ge 2$ distinct positive integers. Let's call a pair of these integers [i]elegant[/i] if their sum is an integer power of $2$. For every $n$ find the largest possible number of elegant pairs.
[i]Proposed by Oleksiy Masalitin[/i]
2018 AMC 10, 22
Let $a, b, c,$ and $d$ be positive integers such that $\gcd(a, b)=24$, $\gcd(b, c)=36$, $\gcd(c, d)=54$, and $70<\gcd(d, a)<100$. Which of the following must be a divisor of $a$?
$\textbf{(A)} \text{ 5} \qquad \textbf{(B)} \text{ 7} \qquad \textbf{(C)} \text{ 11} \qquad \textbf{(D)} \text{ 13} \qquad \textbf{(E)} \text{ 17}$
1997 Moldova Team Selection Test, 3
Prove that every integer $ k$ greater than 1 has a multiple that is less than $ k^4$ and can be written in the decimal system with at most four different digits.
2024 Regional Olympiad of Mexico Southeast, 4
Let \(n\) be a non-negative integer and define \(a_n = 2^n - n\). Determine all non-negative integers \(m\) such that \(s_m = a_0 + a_1 + \dots + a_m\) is a power of 2.
2009 Indonesia TST, 1
Prove that for all odd $ n > 1$, we have $ 8n \plus{} 4|C^{4n}_{2n}$.
2022 Romania Team Selection Test, 4
Any positive integer $N$ which can be expressed as the sum of three squares can obviously be written as \[N=\frac{a^2+b^2+c^2+d^2}{1+abcd}\]where $a,b,c,d$ are nonnegative integers. Is the mutual assertion true?
2009 Korea National Olympiad, 3
Let $n$ be a positive integer. Suppose that the diophantine equation
\[z^n = 8 x^{2009} + 23 y^{2009} \]
uniquely has an integer solution $(x,y,z)=(0,0,0)$. Find the possible minimum value of $n$.
2014 USA Team Selection Test, 2
Let $a_1,a_2,a_3,\ldots$ be a sequence of integers, with the property that every consecutive group of $a_i$'s averages to a perfect square. More precisely, for every positive integers $n$ and $k$, the quantity \[\frac{a_n+a_{n+1}+\cdots+a_{n+k-1}}{k}\] is always the square of an integer. Prove that the sequence must be constant (all $a_i$ are equal to the same perfect square).
[i]Evan O'Dorney and Victor Wang[/i]
1990 IMO Longlists, 87
Let $m$ be an positive odd integer not divisible by $3$. Prove that $\left[4^m -(2+\sqrt 2)^m\right]$ is divisible by $112.$