This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2015 Regional Competition For Advanced Students, 3

Let $n \ge 3$ be a fixed integer. The numbers $1,2,3, \cdots , n$ are written on a board. In every move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a single number remains on the board. Determine the least integer that can be reached at the end by an appropriate sequence of moves. (Theresia Eisenkölbl)

PEN P Problems, 18

Let $p$ be a prime with $p \equiv 1 \pmod{4}$. Let $a$ be the unique integer such that \[p=a^{2}+b^{2}, \; a \equiv-1 \pmod{4}, \; b \equiv 0 \; \pmod{2}\] Prove that \[\sum^{p-1}_{i=0}\left( \frac{i^{3}+6i^{2}+i }{p}\right) = 2 \left( \frac{2}{p}\right),\] where $\left(\frac{k}{p}\right)$ denotes the Legendre Symbol.

2013 Regional Competition For Advanced Students, 1

For which integers between $2000$ and $2010$ (including) is the probability that a random divisor is smaller or equal $45$ the largest?

2022 Saudi Arabia BMO + EGMO TST, 1.3

Let $p$ be a prime number and let $m, n$ be integers greater than $1$ such that $n | m^{p(n-1)} - 1$. Prove that $gcd(m^{n-1} - 1, n) > 1$.

2007 ITest, 14

Let $\phi(n)$ be the number of positive integers $k<n$ which are relatively prime to $n$. For how many distinct values of $n$ is $\phi(n)$ equal to $12$? $\textbf{(A) }0\hspace{14em}\textbf{(B) }1\hspace{14em}\textbf{(C) }2$ $\textbf{(D) }3\hspace{14em}\textbf{(E) }4\hspace{14em}\textbf{(F) }5$ $\textbf{(G) }6\hspace{14em}\textbf{(H) }7\hspace{14em}\textbf{(I) }8$ $\textbf{(J) }9\hspace{14.2em}\textbf{(K) }10\hspace{13.5em}\textbf{(L) }11$ $\textbf{(M) }12\hspace{13.3em}\textbf{(N) }13$

2024 Belarusian National Olympiad, 8.3

Do there exist positive integer numbers $a$ and $b$, for which the number $(\sqrt{1+\frac{4}{a}}-1)(\sqrt{1+\frac{4}{b}}-1)$ is rational [i]V. Kamianetski[/i]

2017 Bulgaria JBMO TST, 1

Find all positive integers $ a, b, c, d $ so that $ a^2+b^2+c^2+d^2=13 \cdot 4^n $

2006 May Olympiad, 1

Determine all pairs of natural numbers $a$ and $b$ such that $\frac{a+1}{b}$ and $\frac{b+1}{a}$ they are natural numbers.

2010 Math Prize For Girls Problems, 5

Find the smallest two-digit positive integer that is a divisor of 201020112012.

2000 China National Olympiad, 2

Find all positive integers $n$ such that there exists integers $n_1,\ldots,n_k\ge 3$, for some integer $k$, satisfying \[n=n_1n_2\cdots n_k=2^{\frac{1}{2^k}(n_1-1)\cdots (n_k-1)}-1.\]

1999 Abels Math Contest (Norwegian MO), 2b

If $a,b,c$ are positive integers such that $b | a^3, c | b^3$ and $a | c^3$ , prove that $abc | (a+b+c)^{13}$

1985 IMO Longlists, 90

Factorise $ 5^{1985}\minus{}1$ as a product of three integers, each greater than $ 5^{100}$.

2025 Taiwan TST Round 2, N

Find all prime number pairs $(p, q)$ such that \[p^q+q^p+p+q-5pq\] is a perfect square. [i]Proposed by chengbilly[/i]

TNO 2008 Junior, 12

(a) Prove that there exist infinitely many natural numbers $n$ such that the sum of the digits of $11n$ is twice the sum of the digits of $n$. (b) Prove that there exist infinitely many natural numbers $n$ such that the sum of the digits of $5n + 1$ is six times the sum of the digits of $n$.

2016 Bundeswettbewerb Mathematik, 1

There are $\tfrac{n(n+1)}{2}$ distinct sums of two distinct numbers, if there are $n$ numbers. For which $n \ (n \geq 3)$ do there exist $n$ distinct integers, such that those sums are $\tfrac{n(n-1)}{2}$ consecutive numbers?

2020 Estonia Team Selection Test, 1

For every positive integer $x$, let $k(x)$ denote the number of composite numbers that do not exceed $x$. Find all positive integers $n$ for which $(k (n))! $ lcm $(1, 2,..., n)> (n - 1) !$ .

1981 IMO Shortlist, 1

[b]a.)[/b] For which $n>2$ is there a set of $n$ consecutive positive integers such that the largest number in the set is a divisor of the least common multiple of the remaining $n-1$ numbers? [b]b.)[/b] For which $n>2$ is there exactly one set having this property?

2008 Irish Math Olympiad, 3

Find $ a_3,a_4,...,a{}_2{}_0{}_0{}_8$, such that $ a_i =\pm1$ for $ i=3,...,2008$ and $ \sum\limits_{i=3}^{2008} a_i2^i = 2008$ and show that the numbers $ a_3,a_4,...,a_{2008}$ are uniquely determined by these conditions.

Kettering MO, 2009

[b]p1.[/b] Prove that if $a, b, c, d$ are real numbers, then $$\max \{a + c, b + d\} \le \max \{a, b\} + \max \{c, d\}$$ [b]p2.[/b] Find the smallest positive integer whose digits are all ones which is divisible by $3333333$. [b]p3.[/b] Find all integer solutions of the equation $\sqrt{x} +\sqrt{y} =\sqrt{2560}$. [b]p4.[/b] Find the irrational number: $$A =\sqrt{ \frac12+\frac12 \sqrt{\frac12+\frac12 \sqrt{ \frac12 +...+ \frac12 \sqrt{ \frac12}}}}$$ ($n$ square roots). [b]p5.[/b] The Math country has the shape of a regular polygon with $N$ vertexes. $N$ airports are located on the vertexes of that polygon, one airport on each vertex. The Math Airlines company decided to build $K$ additional new airports inside the polygon. However the company has the following policies: (i) it does not allow three airports to lie on a straight line, (ii) any new airport with any two old airports should form an isosceles triangle. How many airports can be added to the original $N$? [b]p6.[/b] The area of the union of the $n$ circles is greater than $9$ m$^2$(some circles may have non-empty intersections). Is it possible to choose from these $n$ circles some number of non-intersecting circles with total area greater than $1$ m$^2$? PS. You should use hide for answers.

2023 BMT, Tie 4

Let $N = 2^{18} \cdot 3^{19} \cdot5^{20} \cdot7^{21} \cdot 11^{22}$. Compute the number of positive integer divisors of $N$ whose units digit is $7$.

2004 Germany Team Selection Test, 1

Each positive integer $a$ undergoes the following procedure in order to obtain the number $d = d\left(a\right)$: (i) move the last digit of $a$ to the first position to obtain the numb er $b$; (ii) square $b$ to obtain the number $c$; (iii) move the first digit of $c$ to the end to obtain the number $d$. (All the numbers in the problem are considered to be represented in base $10$.) For example, for $a=2003$, we get $b=3200$, $c=10240000$, and $d = 02400001 = 2400001 = d(2003)$.) Find all numbers $a$ for which $d\left( a\right) =a^2$. [i]Proposed by Zoran Sunic, USA[/i]

2007 Moldova Team Selection Test, 1

Find the least positive integers $m,k$ such that a) There exist $2m+1$ consecutive natural numbers whose sum of cubes is also a cube. b) There exist $2k+1$ consecutive natural numbers whose sum of squares is also a square. The author is Vasile Suceveanu

2015 Puerto Rico Team Selection Test, 8

Consider the $2015$ integers $n$, from $ 1$ to $2015$. Determine for how many values ​​of $n$ it is verified that the number $n^3 + 3^n$ is a multiple of $5$.

2007 Estonia Math Open Junior Contests, 10

Prove that for every integer $k$, there exists a integer $n$ which can be expressed in at least $k$ different ways as the sum of a number of squares of integers (regardless of the order of additions) where the additions are all in different pairs.

1983 Austrian-Polish Competition, 2

Find all triples of positive integers $(p, q, n)$ with $p$ and $q$ prime, such that $p(p+1)+q(q+1) = n(n+1)$.