This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Saudi Arabia BMO TST, 3

For any positive integer $n$, show that there exists a positive integer $m$ such that $n$ divides $2016^m + m$.

2021 Federal Competition For Advanced Students, P2, 3

Find all triples $(a, b, c)$ of natural numbers $a, b$ and $c$, for which $a^{b + 20} (c-1) = c^{b + 21} - 1$ is satisfied. (Walther Janous)

2006 Iran MO (3rd Round), 1

$n$ is a natural number. $d$ is the least natural number that for each $a$ that $gcd(a,n)=1$ we know $a^{d}\equiv1\pmod{n}$. Prove that there exist a natural number that $\mbox{ord}_{n}b=d$

2017 Bosnia And Herzegovina - Regional Olympiad, 4

Let $S$ be a set of $n$ distinct real numbers, and $A_S$ set of arithemtic means of two distinct numbers from $S$. For given $n \geq 2$ find minimal number of elements in $A_S$

2018 European Mathematical Cup, 1

A partition of a positive integer is even if all its elements are even numbers. Similarly, a partition is odd if all its elements are odd. Determine all positive integers $n$ such that the number of even partitions of $n$ is equal to the number of odd partitions of $n$. Remark: A partition of a positive integer $n$ is a non-decreasing sequence of positive integers whose sum of elements equals $n$. For example, $(2; 3; 4), (1; 2; 2; 2; 2)$ and $(9) $ are partitions of $9.$

2014 Postal Coaching, 5

Fix positive integers $n$ and $k\ge 2$. A list of $n$ integers is written in a row on a blackboard. You can choose a contiguous block of integers, and I will either add $1$ to all of them or subtract $1$ from all of them. You can repeat this step as often as you like, possibly adapting your selections based on what I do. Prove that after a finite number of steps, you can reach a state where at least $n-k+2$ of the numbers on the blackboard are all simultaneously divisible by $k$.

LMT Speed Rounds, 2016.6

A positive integer is called [i]cool[/i] if it can be expressed in the form $a!\cdot b!+315$ where $a,b$ are positive integers. For example, $1!\cdot 1!+315=316$ is a cool number. Find the sum of all cool numbers that are also prime numbers. [i]Proposed by Evan Fang

2016 EGMO, 6

Let $S$ be the set of all positive integers $n$ such that $n^4$ has a divisor in the range $n^2 +1, n^2 + 2,...,n^2 + 2n$. Prove that there are infinitely many elements of $S$ of each of the forms $7m, 7m+1, 7m+2, 7m+5, 7m+6$ and no elements of $S$ of the form $7m+3$ and $7m+4$, where $m$ is an integer.

2021 South East Mathematical Olympiad, 3

Let $p$ be an odd prime and $\{u_i\}_{i\ge 0}$be an integer sequence. Let $v_n=\sum_{i=0}^{n} C_{n}^{i} p^iu_i$ where $C_n^i$ denotes the binomial coefficients. If $v_n=0$ holds for infinitely many $n$ , prove that it holds for every positive integer $n$.

2021 Princeton University Math Competition, B2

Let $p$ be an odd prime. Prove that for every integer $k$, there exist integers $a, b$ such that $p|a^2 + b^2 - k$.

2015 Vietnam Team selection test, Problem 3

A positive interger number $k$ is called “$t-m$”-property if forall positive interger number $a$, there exists a positive integer number $n$ such that ${{1}^{k}}+{{2}^{k}}+{{3}^{k}}+...+{{n}^{k}} \equiv a (\bmod m).$ a) Find all positive integer numbers $k$ which has $t-20$-property. b) Find smallest positive integer number $k$ which has $t-{{20}^{15}}$-property.

2022 Bolivia IMO TST, P2

Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers. [i]Proposed by Dorlir Ahmeti, Albania[/i]

1978 Yugoslav Team Selection Test, Problem 2

Let $k_0$ be a unit semi-circle with diameter $AB$. Assume that $k_1$ is a circle of radius $r_1=\frac12$ that is tangent to both $k_0$ and $AB$. The circle $k_{n+1}$ of radius $r_{n+1}$ touches $k_n,k_0$, and $AB$. Prove that: (a) For each $n\in\{2,3,\ldots\}$ it holds that $\frac1{r_{n+1}}+\frac1{r_{n-1}}=\frac6{r_n}-4$. (b) $\frac1{r_n}$ is either a square of an even integer, or twice a square of an odd integer.

1966 Swedish Mathematical Competition, 3

Show that an integer $= 7 \mod 8$ cannot be sum of three squares.

2017 IMO, 1

For each integer $a_0 > 1$, define the sequence $a_0, a_1, a_2, \ldots$ for $n \geq 0$ as $$a_{n+1} = \begin{cases} \sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer,} \\ a_n + 3 & \text{otherwise.} \end{cases} $$ Determine all values of $a_0$ such that there exists a number $A$ such that $a_n = A$ for infinitely many values of $n$. [i]Proposed by Stephan Wagner, South Africa[/i]

2024 Ecuador NMO (OMEC), 5

Find all triples of non-negative integer numbers $(E, C, U)$ such that $EC \ge 1$ and: $$2^{3^E}+3^{2^C}=593 \cdot 5^U$$

2002 China Team Selection Test, 2

Find all non-negative integers $m$ and $n$, such that $(2^n-1) \cdot (3^n-1)=m^2$.

1984 IMO Longlists, 40

Find one pair of positive integers $a,b$ such that $ab(a+b)$ is not divisible by $7$, but $(a+b)^7-a^7-b^7$ is divisible by $7^7$.

2019 Philippine TST, 5

Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: [list=1] [*] Each number in the table is congruent to $1$ modulo $n$. [*] The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. [/list] Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.

2010 India IMO Training Camp, 5

Given an integer $k>1$, show that there exist an integer an $n>1$ and distinct positive integers $a_1,a_2,\cdots a_n$, all greater than $1$, such that the sums $\sum_{j=1}^n a_j$ and $\sum_{j=1}^n \phi (a_j)$ are both $k$-th powers of some integers. (Here $\phi (m)$ denotes the number of positive integers less than $m$ and relatively prime to $m$.)

2020 Switzerland - Final Round, 1

Let $\mathbb N$ be the set of positive integers. Find all functions $f\colon\mathbb N\to \mathbb N$ such that for every $m,n\in \mathbb N$, \[ f(m)+f(n)\mid m+n. \]

2013 Israel National Olympiad, 4

Determine the number of positive integers $n$ satisfying: [list] [*] $n<10^6$ [*] $n$ is divisible by 7 [*] $n$ does not contain any of the digits 2,3,4,5,6,7,8. [/list]

2017 Ecuador NMO (OMEC), 1

Determine what day of the week day was: June $6$, $1944$. Note: Leap years are those that are multiples of $4$ and do not end in $00$ or that are multiples of $400$, for example $1812$, $1816$, $1820$, $1600$, $2000$, but $1800$, $1810$, $2100$ are not leaps. Giving the answer without any mathematical justification will not award points.

2021 Philippine MO, 3

Denote by $\mathbb{Q}^+$ the set of positive rational numbers. A function $f : \mathbb{Q}^+ \to \mathbb{Q}$ satisfies • $f(p) = 1$ for all primes $p$, and • $f(ab) = af(b) + bf(a)$ for all $ a,b \in \mathbb{Q}^+ $. For which positive integers $n$ does the equation $nf(c) = c$ have at least one solution $c$ in $\mathbb{Q}^+$?

2017 Bosnia and Herzegovina Team Selection Test, Problem 2

Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$. [i]Proposed by Dorlir Ahmeti, Albania[/i]