Found problems: 15460
2009 Chile National Olympiad, 3
Let $S = \frac{1}{a_1}+\frac{2}{a_2}+ ... +\frac{100}{a_{100}}$ where $a_1, a_2,..., a_{100}$ are positive integers. What are all the possible integer values that $S$ can take ?
1999 China National Olympiad, 1
Let $m$ be a positive integer. Prove that there are integers $a, b, k$, such that both $a$ and $b$ are odd, $k\geq0$ and
\[2m=a^{19}+b^{99}+k\cdot2^{1999}\]
2022 AIME Problems, 5
Twenty distinct points are marked on a circle and labeled $1$ through $20$ in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original $20$ points.
2022 IMAR Test, 1
Find all pairs of primes $p, q<2023$ such that $p \mid q^2+8$ and $q \mid p^2+8$.
2017 Hanoi Open Mathematics Competitions, 14
Put $P = m^{2003}n^{2017} - m^{2017}n^{2003}$ , where $m, n \in N$.
a) Is $P$ divisible by $24$?
b) Do there exist $m, n \in N$ such that $P$ is not divisible by $7$?
2017 South East Mathematical Olympiad, 2
Let $x_i \in \{0,1\}(i=1,2,\cdots ,n)$,if the value of function $f=f(x_1,x_2, \cdots ,x_n)$ can only be $0$ or $1$,then we call $f$ a $n$-var Boole function,and we denote $D_n(f)=\{(x_1,x_2, \cdots ,x_n)|f(x_1,x_2, \cdots ,x_n)=0\}.$
$(1)$ Find the number of $n$-var Boole function;
$(2)$ Let $g$ be a $n$-var Boole function such that $g(x_1,x_2, \cdots ,x_n) \equiv 1+x_1+x_1x_2+x_1x_2x_3 +\cdots +x_1x_2 \cdots x_n \pmod 2$,
Find the number of elements of the set $D_n(g)$,and find the maximum of $n \in \mathbb{N}_+$ such that
$\sum_{(x_1,x_2, \cdots ,x_n) \in D_n(g)}(x_1+x_2+ \cdots +x_n) \le 2017.$
2019 Mid-Michigan MO, 7-9
[b]p1.[/b] Prove that the equation $x^6 - 143x^5 - 917x^4 + 51x^3 + 77x^2 + 291x + 1575 = 0$ has no integer solutions.
[b]p2.[/b] There are $81$ wheels in a storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that it can be detected with certainty after four measurements on a balance scale.
[b]p3.[/b] Rob and Ann multiplied the numbers from $1$ to $100$ and calculated the sum of digits of this product. For this sum, Rob calculated the sum of its digits as well. Then Ann kept repeating this operation until he got a one-digit number. What was this number?
[b]p4.[/b] Rui and Jui take turns placing bishops on the squares of the $ 8\times 8$ chessboard in such a way that bishops cannot attack one another. (In this game, the color of the rooks is irrelevant.) The player who cannot place a rook loses the game. Rui takes the first turn. Who has a winning strategy, and what is it?
[b]p5.[/b] The following figure can be cut along sides of small squares into several (more than one) identical shapes. What is the smallest number of such identical shapes you can get?
[img]https://cdn.artofproblemsolving.com/attachments/8/e/9cd09a04209774dab34bc7f989b79573453f35.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2000 Belarus Team Selection Test, 6.2
A positive integer $A_k...A_1A_0$ is called monotonic if $A_k \le ..\le A_1 \le A_0$.
Show that for any $n \in N$ there is a monotonic perfect square with $n$ digits.
2024/2025 TOURNAMENT OF TOWNS, P3
A positive integer $M$ has been represented as a product of primes. Each of these primes is increased by 1 . The product $N$ of the new multipliers is divisible by $M$ . Prove that if we represent $N$ as a product of primes and increase each of them by 1 then the product of the new multipliers will be divisible by $N$ .
Alexandr Gribalko
2024 Germany Team Selection Test, 3
Let $a_1, \dots, a_n, b_1, \dots, b_n$ be $2n$ positive integers such that the $n+1$ products
\[a_1 a_2 a_3 \cdots a_n, b_1 a_2 a_3 \cdots a_n, b_1 b_2 a_3 \cdots a_n, \dots, b_1 b_2 b_3 \cdots b_n\]
form a strictly increasing arithmetic progression in that order. Determine the smallest possible integer that could be the common difference of such an arithmetic progression.
2023 LMT Fall, 13
Given that the base-$17$ integer $\overline{8323a02421_{17}}$ (where a is a base-$17$ digit) is divisible by $\overline{16_{10}}$, find $a$. Express your answer in base $10$.
[i]Proposed by Jonathan Liu[/i]
2022-IMOC, N6
Find all integer coefficient polynomial $P(x)$ such that for all positive integer $x$, we have $$\tau(P(x))\geq\tau(x)$$Where $\tau(n)$ denotes the number of divisors of $n$. Define $\tau(0)=\infty$.
Note: you can use this conclusion. For all $\epsilon\geq0$, there exists a positive constant $C_\epsilon$ such that for all positive integer $n$, the $n$th smallest prime is at most $C_\epsilon n^{1+\epsilon}$.
[i]Proposed by USJL[/i]
2021 IMO Shortlist, N1
Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$
2024 Princeton University Math Competition, A2 / B4
A quadratic polynomial with positive integer coefficients and rational roots can be written as $196x^2+Bx + 135$ for some integer $B.$ What is the sum of all possible values of $B$ such that $\gcd(B, 196 \cdot 135) = 1$?
DMM Team Rounds, 2002
[b]p1.[/b] What is the last digit of
$$1! + 2! + ... + 10!$$
where $n!$ is defined to equal $1 \cdot 2 \cdot ... \cdot n$?
[b]p2.[/b] What pair of positive real numbers, $(x, y)$, satisfies
$$x^2y^2 = 144$$
$$(x - y)^3 = 64?$$
[b]p3.[/b] Paul rolls a standard $6$-sided die, and records the results. What is the probability that he rolls a $1$ ten times before he rolls a $6$ twice?
[b]p4.[/b] A train is approaching a $1$ kilometer long tunnel at a constant $40$ km/hr. It so happens that if Roger, who is inside, runs towards either end of the tunnel at a contant $10$ km/hr, he will reach that end at the exact same time as the train. How far from the center of the tunnel is Roger?
[b]p5.[/b] Let $ABC$ be a triangle with $A$ being a right angle. Let $w$ be a circle tangent to $\overline{AB}$ at $A$ and tangent to $\overline{BC}$ at some point $D$. Suppose $w$ intersects $\overline{AC}$ again at $E$ and that $\overline{CE} = 3$, $\overline{CD} = 6$. Compute $\overline{BD}$.
[b]p6.[/b] In how many ways can $1000$ be written as a sum of consecutive integers?
[b]p7.[/b] Let $ABC$ be an isosceles triangle with $\overline{AB} = \overline{AC} = 10$ and $\overline{BC} = 6$. Let $M$ be the midpoint of $\overline{AB}$, and let $\ell$ be the line through $A$ parallel to $\overline{BC}$. If $\ell$ intersects the circle through $A$, $C$ and $M$ at $D$, then what is the length of $\overline{AD}$?
[b]p8.[/b] How many ordered triples of pairwise relatively prime, positive integers, $\{a, b, c\}$, have the property that $a + b$ is a multiple of $c$, $b + c$ is a multiple of $a$, and $a + c$ is a multiple of $b$?
[b]p9.[/b] Consider a hexagon inscribed in a circle of radius $r$. If the hexagon has two sides of length $2$, two sides of length $7$, and two sides of length $11$, what is $r$?
[b]p10.[/b] Evaluate
$$\sum^{\infty}_{i=0} \sum^{\infty}_{j=0} \frac{\left( (-1)^i + (-1)^j\right) \cos (i) \sin (j)}{i!j!} ,$$
where angles are measured in degrees, and $0!$ is defined to equal $1$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 India Regional Mathematical Olympiad, 6
Let $P(x)=x^3+ax^2+b$ and $Q(x)=x^3+bx+a$, where $a$ and $b$ are nonzero real numbers. Suppose that the roots of the equation $P(x)=0$ are the reciprocals of the roots of the equation $Q(x)=0$. Prove that $a$ and $b$ are integers. Find the greatest common divisor of $P(2013!+1)$ and $Q(2013!+1)$.
2006 Rioplatense Mathematical Olympiad, Level 3, 1
(a) For each integer $k\ge 3$, find a positive integer $n$ that can be represented as the sum of exactly $k$ mutually distinct positive divisors of $n$.
(b) Suppose that $n$ can be expressed as the sum of exactly $k$ mutually distinct positive divisors of $n$ for some $k\ge 3$. Let $p$ be the smallest prime divisor of $n$. Show that \[\frac1p+\frac1{p+1}+\cdots+\frac{1}{p+k-1}\ge1.\]
2010 Junior Balkan Team Selection Tests - Romania, 1
Determine the prime numbers $p, q, r$ with the property that: $p(p-7) + q (q-7) = r (r-7)$.
2019 Centers of Excellency of Suceava, 2
For a natural number $ n\ge 2, $ calculate the integer part of $ \sqrt[n]{1+n}-\sqrt {2/n} . $
[i]Dan Nedeianu[/i]
2005 iTest, 40
$ITEST + AHSIMC = 6666CS$. Each letter represents a unique digit from $0$ to $9$. How many solutions of the form $(C,A,S,H)$ exist?
2009 Princeton University Math Competition, 3
Find the sum of all prime numbers $p$ which satisfy \[p = a^4 + b^4 + c^4 - 3\] for some primes (not necessarily distinct) $a$, $b$ and $c$.
2020 New Zealand MO, 2
Find the smallest positive integer $N$ satisfying the following three properties.
$\bullet$ N leaves a remainder of $5$ when divided by $7$.
$\bullet$ N leaves a remainder of $6$ when divided by $ 8$.
$\bullet$ N leaves a remainder of $7$ when divided by $9$.
2001 China Team Selection Test, 3
Consider the problem of expressing $42$ as \(42 = x^3 + y^3 + z^3 - w^2\), where \(x, y, z, w\) are integers. Determine the number of ways to represent $42$ in this form and prove your conclusion.
2010 CHMMC Fall, Individual
[b]p1.[/b] Susan plays a game in which she rolls two fair standard six-sided dice with sides labeled one through six. She wins if the number on one of the dice is three times the number on the other die. If Susan plays this game three times, compute the probability that she wins at least once.
[b]p2.[/b] In triangles $\vartriangle ABC$ and $\vartriangle DEF$, $DE = 4AB$, $EF = 4BC$, and $FD = 4CA$. The area of $\vartriangle DEF$ is $360$ units more than the area of $\vartriangle ABC$. Compute the area of $\vartriangle ABC$.
[b]p3.[/b] Andy has $2010$ square tiles, each of which has a side length of one unit. He plans to arrange the tiles in an $m\times n$ rectangle, where $mn = 2010$. Compute the sum of the perimeters of all of the different possible rectangles he can make. Two rectangles are considered to be the same if one can be rotated to become the other, so, for instance, a $1\times 2010$ rectangle is considered to be the same as a $2010\times 1$ rectangle.
[b]p4.[/b] Let $$S = \log_2 9 \log_3 16 \log_4 25 ... \log_{999} 1000000.$$
Compute the greatest integer less than or equal to $\log_2 S$.
[b]p5.[/b] Let $A$ and $B$ be fixed points in the plane with distance $AB = 1$. An ant walks on a straight line from point $A$ to some point $C$ in the plane and notices that the distance from itself to B always decreases at any time during this walk. Compute the area of the region in the plane containing all points where point $C$ could possibly be located.
[b]p6.[/b] Lisette notices that $2^{10} = 1024$ and $2^{20} = 1 048 576$. Based on these facts, she claims that every number of the form $2^{10k}$ begins with the digit $1$, where k is a positive integer. Compute the smallest $k$ such that Lisette's claim is false. You may or may not find it helpful to know that $ln 2 \approx 0.69314718$, $ln 5 \approx 1.60943791$, and $log_{10} 2 \approx 0:30103000$.
[b]p7.[/b] Let $S$ be the set of all positive integers relatively prime to $6$. Find the value of $\sum_{k\in S}\frac{1}{2^k}$ .
[b]p8.[/b] Euclid's algorithm is a way of computing the greatest common divisor of two positive integers $a$ and $b$ with $a > b$. The algorithm works by writing a sequence of pairs of integers as follows.
1. Write down $(a, b)$.
2. Look at the last pair of integers you wrote down, and call it $(c, d)$.
$\bullet$ If $d \ne 0$, let r be the remainder when c is divided by d. Write down $(d, r)$.
$\bullet$ If $d = 0$, then write down c. Once this happens, you're done, and the number you just wrote down is the greatest common divisor of a and b.
3. Repeat step 2 until you're done.
For example, with $a = 7$ and $b = 4$, Euclid's algorithm computes the greatest common divisor in $4$ steps:
$$(7, 4) \to (4, 3) \to (3, 1) \to (1, 0) \to 1$$
For $a > b > 0,$ compute the least value of a such that Euclid's algorithm takes $10$ steps to compute the greatest common divisor of $a$ and $b$.
[b]p9.[/b] Let $ABCD$ be a square of unit side length. Inscribe a circle $C_0$ tangent to all of the sides of the square. For each positive integer $n$, draw a circle Cn that is externally tangent to $C_{n-1}$ and also tangent to sides $AB$ and $AD$. Suppose $r_i$ is the radius of circle $C_i$ for every nonnegative integer $i$. Compute $\sqrt[200]{r_0/r_{100}}$.
[b]p10.[/b] Rachel and Mike are playing a game. They start at $0$ on the number line. At each positive integer on the number line, there is a carrot. At the beginning of the game, Mike picks a positive integer $n$ other than $30$. Every minute, Rachel moves to the next multiple of $30$ on the number line that has a carrot on it and eats that carrot. At the same time, every minute, Mike moves to the next multiple of $n$ on the number line that has a carrot on it and eats that carrot. Mike wants to pick an $n$ such that, as the game goes on, he is always within $1000$ units of Rachel. Compute the average (arithmetic mean) of all such $n$.
[b]p11.[/b] Darryl has a six-sided die with faces $1, 2, 3, 4, 5, 6$. He knows the die is weighted so that one face comes up with probability $1/2$ and the other five faces have equal probability of coming up. He unfortunately does not know which side is weighted, but he knows each face is equally likely to be the weighted one. He rolls the die 5 times and gets a $1$, $2$, $3$, $4$ and $5$ in some unspecified order. Compute the probability that his next roll is a $6$.
[b]p12.[/b] Let $F_0 = 1$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$. Let $P(x) =\sum^{99}_{k=0} x^{F_k}$ . The remainder when $P(x)$ is divided by $x^3 - 1$ can be expressed as $ax^2 + bx + c$. Find $2a + b$.
[b]p13.[/b] Let $\theta \ne 0$ be the smallest acute angle for which $\sin \theta$, $\sin (2\theta)$, $\sin (3\theta)$, when sorted in increasing order, form an arithmetic progression. Compute $\cos (\theta/2)$.
[b]p14.[/b] A $4$-dimensional hypercube of edge length 1 is constructed in $4$-space with its edges parallel to the coordinate axes and one vertex at the origin. The coordinates of its sixteen vertices are given by $(a, b, c, d)$, where each of $a$, $b$, $c$, and $d$ is either $0$ or $1$. The $3$-dimensional hyperplane given by $x + y + z + w = 2$ intersects the hypercube at $6$ of its vertices. Compute the $3$-dimensional volume of the solid formed by the intersection.
[b]p15.[/b] A student puts $2010$ red balls and $1957$ blue balls into a box. Weiqing draws randomly from the box one ball at a time without replacement. She wins if, at anytime, the total number of blue balls drawn is more than the total number of red balls drawn. Assuming Weiqing keeps drawing balls until she either wins or runs out, ompute the probability that she eventually wins.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
CVM 2020, Problem 1+
Given the number $\overline{a_1a_2\cdots a_n}$ such that
$$\overline{a_n\cdots a_2a_1}\mid \overline{a_1a_2\cdots a_n}$$Then show $(\overline{a_1a_2\cdots a_n})(\overline{a_n\cdots a_2a_1})$ is a perfect square.
[i]Proposed by Ezra Guerrero, Francisco Morazan[/i]