This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2018 Ukraine Team Selection Test, 6

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2010 India IMO Training Camp, 5

Given an integer $k>1$, show that there exist an integer an $n>1$ and distinct positive integers $a_1,a_2,\cdots a_n$, all greater than $1$, such that the sums $\sum_{j=1}^n a_j$ and $\sum_{j=1}^n \phi (a_j)$ are both $k$-th powers of some integers. (Here $\phi (m)$ denotes the number of positive integers less than $m$ and relatively prime to $m$.)

2014 ELMO Shortlist, 3

Let $t$ and $n$ be fixed integers each at least $2$. Find the largest positive integer $m$ for which there exists a polynomial $P$, of degree $n$ and with rational coefficients, such that the following property holds: exactly one of \[ \frac{P(k)}{t^k} \text{ and } \frac{P(k)}{t^{k+1}} \] is an integer for each $k = 0,1, ..., m$. [i]Proposed by Michael Kural[/i]

2020 LIMIT Category 1, 10

For natural number $t$, the repeating base-$t$ representation of the (base-ten) rational number $\frac{7}{51}$ is $0.\overline{23}_t=0.232323..._t$. What is $t$ ?

2021 Serbia Team Selection Test, P3

Given is a prime number $p$. Find the number of positive integer solutions $(a, b, c, d)$ of the system of equations $ac+bd = p(a+c)$ and $bc-ad = p(b-d)$.

2012 CHMMC Spring, Mixer

[u]Part 1[/u] You might think this round is broken after solving some of these problems, but everything is intentional. [b]1.1.[/b] The number $n$ can be represented uniquely as the sum of $6$ distinct positive integers. Find $n$. [b]1.2.[/b] Let $ABC$ be a triangle with $AB = BC$. The altitude from $A$ intersects line $BC$ at $D$. Suppose $BD = 5$ and $AC^2 = 1188$. Find $AB$. [b]1.3.[/b] A lemonade stand analyzes its earning and operations. For the previous month it had a \$45 dollar budget to divide between production and advertising. If it spent $k$ dollars on production, it could make $2k - 12$ glasses of lemonade. If it spent $k$ dollars on advertising, it could sell each glass at an average price of $15 + 5k$ cents. The amount it made in sales for the previous month was $\$40.50$. Assuming the stand spent its entire budget on production and advertising, what was the absolute di erence between the amount spent on production and the amount spent on advertising? [b]1.4.[/b] Let $A$ be the number of di erent ways to tile a $1 \times n$ rectangle with tiles of size $1 \times 1$, $1 \times 3$, and $1 \times 6$. Let B be the number of different ways to tile a $1 \times n$ rectangle with tiles of size $1 \times 2$ and $1 \times 5$, where there are 2 different colors available for the $1 \times 2$ tiles. Given that $A = B$, find $n$. (Two tilings that are rotations or reflections of each other are considered distinct.) [b]1.5.[/b] An integer $n \ge 0$ is such that $n$ when represented in base $2$ is written the same way as $2n$ is in base $5$. Find $n$. [b]1.6.[/b] Let $x$ be a positive integer such that $3$, $ \log_6(12x)$, $\log_6(18x)$ form an arithmetic progression in some order. Find $x$. [u]Part 2[/u] Oops, it looks like there were some [i]intentional [/i] printing errors and some of the numbers from these problems got removed. Any $\blacksquare$ that you see was originally some positive integer, but now its value is no longer readable. Still, if things behave like they did for Part 1, maybe you can piece the answers together. [b]2.1.[/b] The number $n$ can be represented uniquely as the sum of $\blacksquare$ distinct positive integers. Find $n$. [b]2.2.[/b] Let $ABC$ be a triangle with $AB = BC$. The altitude from $A$ intersects line $BC$ at $D$. Suppose $BD = \blacksquare$ and $AC^2 = 1536$. Find $AB$. [b]2.3.[/b] A lemonade stand analyzes its earning and operations. For the previous month it had a $\$50$ dollar budget to divide between production and advertising. If it spent k dollars on production, it could make $2k - 2$ glasses of lemonade. If it spent $k$ dollars on advertising, it could sell each glass at an average price of $25 + 5k$ cents. The amount it made in sales for the previous month was $\$\blacksquare$. Assuming the stand spent its entire budget on production and advertising, what was the absolute di erence between the amount spent on production and the amount spent on advertising? [b]2.4.[/b] Let $A$ be the number of different ways to tile a $1 \times n$ rectangle with tiles of size $1 \times \blacksquare$, $1 \times \blacksquare$, and $1 \times \blacksquare$. Let $B$ be the number of different ways to tile a $1\times n$ rectangle with tiles of size $1 \times \blacksquare$ and $1 \times \blacksquare$, where there are $\blacksquare$ different colors available for the $1 \times \blacksquare$ tiles. Given that $A = B$, find $n$. (Two tilings that are rotations or reflections of each other are considered distinct.) [b]2.5.[/b] An integer $n \ge \blacksquare$ is such that $n$ when represented in base $9$ is written the same way as $2n$ is in base $\blacksquare$. Find $n$. [b]2.6.[/b] Let $x$ be a positive integer such that $1$, $\log_{96}(6x)$, $\log_{96}(\blacksquare x)$ form an arithmetic progression in some order. Find $x$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 Junior Balkan Team Selection Tests - Moldova, 1

For any integer $n$ we define the numbers $a = n^5 + 6n^3 + 8n$ ¸ $b = n^4 + 4n^2 + 3$. Prove that the numbers $a$ and $b$ are relatively prime or have the greatest common factor of $3$.

2022/2023 Tournament of Towns, P6

Let $X{}$ be a set of integers which can be partitioned into $N{}$ disjoint increasing arithmetic progressions (infinite in both directions), and cannot be partitioned into a smaller number of such progressions. Is such partition into $N{}$ progressions unique for every such $X{}$ if a) $N = 2{}$ and b) $N = 3$? [i]Viktor Kleptsyn[/i]

2010 Baltic Way, 19

For which $k$ do there exist $k$ pairwise distinct primes $p_1,p_2,\ldots ,p_k$ such that \[p_1^2+p_2^2+\ldots +p_k^2=2010? \]

2020 ITAMO, 5

Le $S$ be the set of positive integers greater than or equal to $2$. A function $f: S\rightarrow S$ is italian if $f$ satifies all the following three conditions: 1) $f$ is surjective 2) $f$ is increasing in the prime numbers(that is, if $p_1<p_2$ are prime numbers, then $f(p_1)<f(p_2)$) 3) For every $n\in S$ the number $f(n)$ is the product of $f(p)$, where $p$ varies among all the primes which divide $n$ (For instance, $f(360)=f(2^3\cdot 3^2\cdot 5)=f(2)\cdot f(3)\cdot f(5)$). Determine the maximum and the minimum possible value of $f(2020)$, when $f$ varies among all italian functions.

2018 South East Mathematical Olympiad, 4

Does there exist a set $A\subseteq\mathbb{N}^*$ such that for any positive integer $n$, $A\cap\{n,2n,3n,...,15n\}$ contains exactly one element? Please prove your conclusion.

EMCC Team Rounds, 2013

[b]p1.[/b] Determine the number of ways to place $4$ rooks on a $4 \times 4$ chessboard such that: (a) no two rooks attack one another, and (b) the main diagonal (the set of squares marked $X$ below) does not contain any rooks. [img]https://cdn.artofproblemsolving.com/attachments/e/e/e3aa96de6c8ed468c6ef3837e66a0bce360d36.png[/img] The rooks are indistinguishable and the board cannot be rotated. (Two rooks attack each other if they are in the same row or column.) [b]p2.[/b] Seven students, numbered $1$ to $7$ in counter-clockwise order, are seated in a circle. Fresh Mann has 100 erasers, and he wants to distribute them to the students, albeit unfairly. Starting with person $ 1$ and proceeding counter-clockwise, Fresh Mann gives $i$ erasers to student $i$; for example, he gives $ 1$ eraser to student $ 1$, then $2$ erasers to student $2$, et cetera. He continues around the circle until he does not have enough erasers to give to the next person. At this point, determine the number of erasers that Fresh Mann has. [b]p3.[/b] Let $ABC$ be a triangle with $AB = AC = 17$ and $BC = 24$. Approximate $\angle ABC$ to the nearest multiple of $10$ degrees. [b]p4.[/b] Define a sequence of rational numbers $\{x_n\}$ by $x_1 =\frac35$ and for $n \ge 1$, $x_{n+1} = 2 - \frac{1}{x_n}$ . Compute the product $x_1x_2x_3... x_{2013}$. [b]p5.[/b] In equilateral triangle $ABC$, points $P$ and $R$ lie on segment $AB$, points $I$ and $M$ lie on segment $BC$, and points $E$ and $S$ lie on segment $CA$ such that $PRIMES$ is a equiangular hexagon. Given that $AB = 11$, $PR = 2$, $IM = 3$, and $ES = 5$, compute the area of hexagon $PRIMES$. [b]p6.[/b] Let $f(a, b) = \frac{a^2}{a+b}$ . Let $A$ denote the sum of $f(i, j)$ over all pairs of integers $(i, j)$ with $1 \le i < j \le 10$; that is, $$A = (f(1, 2) + f(1, 3) + ...+ f(1, 10)) + (f(2, 3) + f(2, 4) +... + f(2, 10)) +... + f(9, 10).$$ Similarly, let $B$ denote the sum of $f(i, j)$ over all pairs of integers $(i, j)$ with $1 \le j < i \le 10$, that is, $$B = (f(2, 1) + f(3, 1) + ... + f(10, 1)) + (f(3, 2) + f(4, 2) +... + f(10, 2)) +... + f(10, 9).$$ Compute $B - A$. [b]p7.[/b] Fresh Mann has a pile of seven rocks with weights $1, 1, 2, 4, 8, 16$, and $32$ pounds and some integer X between $1$ and $64$, inclusive. He would like to choose a set of the rocks whose total weight is exactly $X$ pounds. Given that he can do so in more than one way, determine the sum of all possible values of $X$. (The two $1$-pound rocks are indistinguishable.) [b]p8.[/b] Let $ABCD$ be a convex quadrilateral with $AB = BC = CA$. Suppose that point $P$ lies inside the quadrilateral with $AP = PD = DA$ and $\angle PCD = 30^o$. Given that $CP = 2$ and $CD = 3$, compute $CA$. [b]p9.[/b] Define a sequence of rational numbers $\{x_n\}$ by $x_1 = 2$, $x_2 = \frac{13}{2}$ , and for $n \ge 1$, $x_{n+2} = 3 -\frac{3}{x_{n+1}}+\frac{1}{x_nx_{n+1}}$. Compute $x_{100}$. [b]p10.[/b] Ten prisoners are standing in a line. A prison guard wants to place a hat on each prisoner. He has two colors of hats, red and blue, and he has $10$ hats of each color. Determine the number of ways in which the prison guard can place hats such that among any set of consecutive prisoners, the number of prisoners with red hats and the number of prisoners with blue hats differ by at most $2$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1987 IMO, 3

Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.

2023 ELMO Shortlist, N2

Determine the greatest positive integer \(n\) for which there exists a sequence of distinct positive integers \(s_1\), \(s_2\), \(\ldots\), \(s_n\) satisfying \[s_1^{s_2}=s_2^{s_3}=\cdots=s_{n-1}^{s_n}.\] [i]Proposed by Holden Mui[/i]

2006 International Zhautykov Olympiad, 1

Solve in positive integers the equation \[ n \equal{} \varphi(n) \plus{} 402 , \] where $ \varphi(n)$ is the number of positive integers less than $ n$ having no common prime factors with $ n$.

2023 JBMO Shortlist, N2

A positive integer is called [i]Tiranian[/i] if it can be written as $x^2+6xy+y^2$, where $x$ and $y$ are (not necessarily distinct) positive integers. The integer $36^{2023}$ is written as the sum of $k$ Tiranian integers. What is the smallest possible value of $k$? [i]Proposed by Miroslav Marinov, Bulgaria[/i]

2015 China Girls Math Olympiad, 4

Let $g(n)$ be the greatest common divisor of $n$ and $2015$. Find the number of triples $(a,b,c)$ which satisfies the following two conditions: $1)$ $a,b,c \in$ {$1,2,...,2015$}; $2)$ $g(a),g(b),g(c),g(a+b),g(b+c),g(c+a),g(a+b+c)$ are pairwise distinct.

2011 AMC 10, 14

A rectangular parking lot has a diagonal of $25$ meters and an area of $168$ square meters. In meters, what is the perimeter of the parking lot? $ \textbf{(A)}\ 52 \qquad \textbf{(B)}\ 58 \qquad \textbf{(C)}\ 62 \qquad \textbf{(D)}\ 68 \qquad \textbf{(E)}\ 70 $

2021 Canadian Junior Mathematical Olympiad, 5

A function $f$ from the positive integers to the positive integers is called [i]Canadian[/i] if it satisfies $$\gcd\left(f(f(x)), f(x+y)\right)=\gcd(x, y)$$ for all pairs of positive integers $x$ and $y$. Find all positive integers $m$ such that $f(m)=m$ for all Canadian functions $f$.

2011 Poland - Second Round, 3

Prove that $\forall x_{1},x_{2},\ldots,x_{2011},y_{1},y_{2},\ldots,y_{2011}\in\mathbb{Z_{+}}$ product: \[(2x_{1}^{2}+3y_{1}^{2})(2x_{2}^{2}+3y_{2}^{2})\ldots(2x_{2011}^{2}+3y_{2011}^{2})\] is not a perfect square.

2007 AIME Problems, 5

The formula for converting a Fahrenheit temperature $F$ to the corresponding Celsius temperature $C$ is $C=\frac{5}{9}(F-32)$. An integer Fahrenheit temperature is converted to Celsius and rounded to the nearest integer; the resulting integer Celsius temperature is converted back to Fahrenheit and rounded to the nearest integer. For how many integer Fahrenheit temperatures $T$ with $32 \leq T \leq 1000$ does the original temperature equal the final temperature?

2011 Benelux, 1

An ordered pair of integers $(m,n)$ with $1<m<n$ is said to be a [i]Benelux couple[/i] if the following two conditions hold: $m$ has the same prime divisors as $n$, and $m+1$ has the same prime divisors as $n+1$. (a) Find three Benelux couples $(m,n)$ with $m\leqslant 14$. (b) Prove that there are infinitely many Benelux couples

2011 Bosnia And Herzegovina - Regional Olympiad, 2

If $p>2$ is prime number and $m$ and $n$ are positive integers such that $$\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}$$ Prove that $p$ divides $m$

2011 Peru IMO TST, 3

Let $a, b$ be integers, and let $P(x) = ax^3+bx.$ For any positive integer $n$ we say that the pair $(a,b)$ is $n$-good if $n | P(m)-P(k)$ implies $n | m - k$ for all integers $m, k.$ We say that $(a,b)$ is $very \ good$ if $(a,b)$ is $n$-good for infinitely many positive integers $n.$ [list][*][b](a)[/b] Find a pair $(a,b)$ which is 51-good, but not very good. [*][b](b)[/b] Show that all 2010-good pairs are very good.[/list] [i]Proposed by Okan Tekman, Turkey[/i]

ICMC 7, 6

Let $f:\mathbb{N}\to\mathbb{N}$ be a bijection of the positive integers. Prove that at least one of the following limits is true: \[\lim_{N\to\infty}\sum_{n=1}^{N}\frac{1}{n+f(n)}=\infty;\qquad\lim_{N\to\infty}\sum_{n=1}^N\left(\frac{1}{n}-\frac{1}{f(n)}\right)=\infty.\][i]Proposed by Dylan Toh[/i]