This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2023 Singapore Senior Math Olympiad, 2

Find all positive integers $k$ such that there exists positive integers $a, b$ such that \[a^2+4=(k^2-4)b^2.\]

2011 QEDMO 9th, 3

A numerist has $n$ eurodollars and distributes them to two bank accounts $A, B$ in Germany and Switzerland, whereby the Eurodollars cannot be split into smaller monetary units due to the lack of a suitable name. In order to hide all money from the tax authorities if necessary, he would like to be able to move all of his money to account $B$. Due to the immense bureaucracy, money is only allowed to be moved between two accounts if the deposited amount in one account is double. Of course, he can carry out several such transfers in a row. Show that the number of ways to initially distribute the money appropriately is a power of two.

2013 Iran Team Selection Test, 15

a) Does there exist a sequence $a_1<a_2<\dots$ of positive integers, such that there is a positive integer $N$ that $\forall m>N$, $a_m$ has exactly $d(m)-1$ divisors among $a_i$s? b) Does there exist a sequence $a_1<a_2<\dots$ of positive integers, such that there is a positive integer $N$ that $\forall m>N$, $a_m$ has exactly $d(m)+1$ divisors among $a_i$s?

1996 IMO Shortlist, 3

A finite sequence of integers $ a_0, a_1, \ldots, a_n$ is called quadratic if for each $ i$ in the set $ \{1,2 \ldots, n\}$ we have the equality $ |a_i \minus{} a_{i\minus{}1}| \equal{} i^2.$ a.) Prove that any two integers $ b$ and $ c,$ there exists a natural number $ n$ and a quadratic sequence with $ a_0 \equal{} b$ and $ a_n \equal{} c.$ b.) Find the smallest natural number $ n$ for which there exists a quadratic sequence with $ a_0 \equal{} 0$ and $ a_n \equal{} 1996.$

2018 Singapore MO Open, 3

Let $n$ be a positive integer. Show that there exists an integer $m$ such that \[ 2018m^2+20182017m+2017 \] is divisible by $2^n$.

1994 Tournament Of Towns, (429) 6

The sum of sixth powers of six integers minus $1$ is six times greater than the product of these six integers. Prove that one of them is $1$ or $-1$ and all others are $0$s. (LD Kurliandchik)

2016 India Regional Mathematical Olympiad, 6

(a). Given any natural number \(N\), prove that there exists a strictly increasing sequence of \(N\) positive integers in harmonic progression. (b). Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.

MMPC Part II 1996 - 2019, 1996

[b]p1.[/b] An Egyptian fraction has the form $1/n$, where $n$ is a positive integer. In ancient Egypt, these were the only fractions allowed. Other fractions between zero and one were always expressed as a sum of distinct Egyptian fractions. For example, $3/5$ was seen as $1/2 + 1/10$, or $1/3 + 1/4 + 1/60$. The preferred method of representing a fraction in Egypt used the "greedy" algorithm, which at each stage, uses the Egyptian fraction that eats up as much as possible of what is left of the original fraction. Thus the greedy fraction for $3/5$ would be $1/2 + 1/10$. a) Find the greedy Egyptian fraction representations for $2/13$. b) Find the greedy Egyptian fraction representations for $9/10$. c) Find the greedy Egyptian fraction representations for $2/(2k+1)$, where $k$ is a positive integer. d) Find the greedy Egyptian fraction representations for $3/(6k+1)$, where $k$ is a positive integer. [b]p2.[/b] a) The smaller of two concentric circles has radius one unit. The area of the larger circle is twice the area of the smaller circle. Find the difference in their radii. [img]https://cdn.artofproblemsolving.com/attachments/8/1/7c4d81ebfbd4445dc31fa038d9dc68baddb424.png[/img] b) The smaller of two identically oriented equilateral triangles has each side one unit long. The smaller triangle is centered within the larger triangle so that the perpendicular distance between parallel sides is always the same number $d$. The area of the larger triangle is twice the area of the smaller triangle. Find $d$. [img]https://cdn.artofproblemsolving.com/attachments/8/7/1f0d56d8e9e42574053c831fa129eb40c093d9.png[/img] [b]p3.[/b] Suppose that the domain of a function $f$ is the set of real numbers and that $f$ takes values in the set of real numbers. A real number $x_0$ is a fixed point of f if $f(x_0) = x_0$. a) Let $f(x) = m x + b$. For which $m$ does $f$ have a fixed point? b) Find the fixed point of f$(x) = m x + b$ in terms of m and b, when it exists. c) Consider the functions $f_c(x) = x^2 - c$. i. For which values of $c$ are there two different fixed points? ii. For which values of $c$ are there no fixed points? iii. In terms of $c$, find the value(s) of the fixed point(s). d) Find an example of a function that has exactly three fixed points. [b]p4.[/b] A square based pyramid is made out of rubber balls. There are $100$ balls on the bottom level, 81 on the next level, etc., up to $1$ ball on the top level. a) How many balls are there in the pyramid? b) If each ball has a radius of $1$ meter, how tall is the pyramid? c) What is the volume of the solid that you create if you place a plane against each of the four sides and the base of the balls? [b]p5.[/b] We wish to consider a general deck of cards specified by a number of suits, a sequence of denominations, and a number (possibly $0$) of jokers. The deck will consist of exactly one card of each denomination from each suit, plus the jokers, which are "wild" and can be counted as any possible card of any suit. For example, a standard deck of cards consists of $4$ suits, $13$ denominations, and $0$ jokers. a) For a deck with $3$ suits $\{a, b, c\}$ and $7$ denominations $\{1, 2, 3, 4, 5, 6, 7\}$, and $0$ jokers, find the probability that a 3-card hand will be a straight. (A straight consists of $3$ cards in sequence, e.g., $1 \heartsuit$ ,$2 \spadesuit$ , $3\clubsuit$ , $2\diamondsuit$ but not $6 \heartsuit$ ,$7 \spadesuit$ , $1\diamondsuit$). b) For a deck with $3$ suits, $7$ denominations, and $0$ jokers, find the probability that a $3$-card hand will consist of $3$ cards of the same suit (i.e., a flush). c) For a deck with $3$ suits, $7$ denominations, and $1$ joker, find the probability that a $3$-card hand dealt at random will be a straight and also the probability that a $3$-card hand will be a flush. d) Find a number of suits and the length of the denomination sequence that would be required if a deck is to contain $1$ joker and is to have identical probabilities for a straight and a flush when a $3$-card hand is dealt. The answer that you find must be an answer such that a flush and a straight are possible but not certain to occur. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1995 Tournament Of Towns, (448) 4

Can the number $a + b + c + d$ be prime if $a, b, c$ and $d$ are positive integers and $ab = cd$?

1980 IMO Shortlist, 12

Find all pairs of solutions $(x,y)$: \[ x^3 + x^2y + xy^2 + y^3 = 8(x^2 + xy + y^2 + 1). \]

2019 ELMO Shortlist, N5

Given an even positive integer $m$, find all positive integers $n$ for which there exists a bijection $f:[n]\to [n]$ so that, for all $x,y\in [n]$ for which $n\mid mx-y$, $$(n+1)\mid f(x)^m-f(y).$$ Note: For a positive integer $n$, we let $[n] = \{1,2,\dots, n\}$. [i]Proposed by Milan Haiman and Carl Schildkraut[/i]

2020 CMIMC Algebra & Number Theory, 10

We call a polynomial $P$ [i]square-friendly[/i] if it is monic, has integer coefficients, and there is a polynomial $Q$ for which $P(n^2)=P(n)Q(n)$ for all integers $n$. We say $P$ is [i]minimally square-friendly[/i] if it is square-friendly and cannot be written as the product of nonconstant, square-friendly polynomials. Determine the number of nonconstant, minimally square-friendly polynomials of degree at most $12$.

1995 Grosman Memorial Mathematical Olympiad, 1

Positive integers $d_1,d_2,...,d_n$ are divisors of $1995$. Prove that there exist $d_i$ and $d_j$ among them, such the denominator of the reduced fraction $d_i/d_j$ is at least $n$

2015 Saudi Arabia Pre-TST, 1.3

Find all integer solutions of the equation $x^2y^5 - 2^x5^y = 2015 + 4xy$. (Malik Talbi)

2011 Nordic, 1

When $a_0, a_1, \dots , a_{1000}$ denote digits, can the sum of the $1001$-digit numbers $a_0a_1\cdots a_{1000}$ and $a_{1000}a_{999}\cdots a_0$ have odd digits only?

2022 Saudi Arabia BMO + EGMO TST, 2.2

Find all positive integers $n$ that have precisely $\sqrt{n + 1}$ natural divisors.

1949-56 Chisinau City MO, 5

Prove that the square of any integer cannot end with two fives.

2015 Baltic Way, 18

Let $f(x)=x^n + a_{n-1}x^{n-1} + ...+ a_0 $ be a polynomial of degree $ n\ge 1 $ with $ n$ (not necessarily distinct) integer roots. Assume that there exist distinct primes $p_0,p_1,..,p_{n-1}$ such that $a_i > 1$ is a power of $p_i$, for all $ i=0,1,..,n-1$. Find all possible values of $ n$.

2004 South africa National Olympiad, 1

Let $a=1111\dots1111$ and $b=1111\dots1111$ where $a$ has forty ones and $b$ has twelve ones. Determine the greatest common divisor of $a$ and $b$.

2001 Iran MO (2nd round), 1

Let $n$ be a positive integer and $p$ be a prime number such that $np+1$ is a perfect square. Prove that $n+1$ can be written as the sum of $p$ perfect squares.

2001 Tournament Of Towns, 7

Alex thinks of a two-digit integer (any integer between $10$ and $99$). Greg is trying to guess it. If the number Greg names is correct, or if one of its digits is equal to the corresponding digit of Alex’s number and the other digit differs by one from the corresponding digit of Alex’s number, then Alex says “hot”; otherwise, he says “cold”. (For example, if Alex’s number was $65$, then by naming any of $64, 65, 66, 55$ or $75$ Greg will be answered “hot”, otherwise he will be answered “cold”.) [list][b](a)[/b] Prove that there is no strategy which guarantees that Greg will guess Alex’s number in no more than 18 attempts. [b](b)[/b] Find a strategy for Greg to find out Alex’s number (regardless of what the chosen number was) using no more than $24$ attempts. [b](c)[/b] Is there a $22$ attempt winning strategy for Greg?[/list]

VMEO I 2004, 2

The Fibonacci numbers $(F_n)_{n=1}^{\infty}$ are defined as follows: $$F_1 = F_2 = 1, F_n = F_{n-2} + F_{n-1}, n = 3, 4, ...$$ Assume $p$ is a prime greater than $3$. With $m$ being a natural number greater than $3$, find all $n$ numbers such that $F_n$ is divisible by $p^m$.

2011 ELMO Shortlist, 2

Let $p\ge5$ be a prime. Show that \[\sum_{k=0}^{(p-1)/2}\binom{p}{k}3^k\equiv 2^p - 1\pmod{p^2}.\] [i]Victor Wang.[/i]

1977 IMO Longlists, 37

Let $A_1,A_2,\ldots ,A_{n+1}$ be positive integers such that $(A_i,A_{n+1})=1$ for every $i=1,2,\ldots ,n$. Show that the equation \[x_1^{A_1}+x_2^{A_2}+\ldots + x_n^{A_n}=x_{n+1}^{A_{n+1} }\] has an infinite set of solutions $(x_1,x_2,\ldots , x_{n+1})$ in positive integers.

2022 Federal Competition For Advanced Students, P2, 3

Lisa writes a positive whole number in the decimal system on the blackboard and now makes in each turn the following: The last digit is deleted from the number on the board and then the remaining shorter number (or 0 if the number was one digit) becomes four times the number deleted number added. The number on the board is now replaced by the result of this calculation. Lisa repeats this until she gets a number for the first time was on the board. (a) Show that the sequence of moves always ends. (b) If Lisa begins with the number $53^{2022} - 1$, what is the last number on the board? Example: If Lisa starts with the number $2022$, she gets $202 + 4\cdot 2 = 210$ in the first move and overall the result $$2022 \to 210 \to 21 \to 6 \to 24 \to 18 \to 33 \to 15 \to 21$$. Since Lisa gets $21$ for the second time, the turn order ends. [i](Stephan Pfannerer)[/i]